UNIVERSIDADE FEDERAL DE MATO GROSSO

METABÓLITOS ESPECIAIS DAS FOLHAS DE *Zanthoxylum riedelianum* Engl. E DA CASCA DO CAULE DE *Zanthoxylum rigidum* Humb. Bonpl. ex Willd (RUTACEAE)

Pâmela Jordana dos Santos Beirigo Mestrado em Química, área de concentração Produtos Naturais

> CUIABÁ MATO GROSSO - BRASIL 2013

PÂMELA JORDANA DOS SANTOS BEIRIGO

METABÓLITOS ESPECIAIS DAS FOLHAS DE *Zanthoxylum riedelianum* Engl. E DA CASCA DO CAULE DE *Zanthoxylum rigidum* Humb. Bonpl. ex Willd (*RUTACEAE*)

Dissertação apresentada ao Programa de Pós-Graduação em Química da Universidade Federal de Mato Grosso como requisito parcial à obtenção do título de mestre em química, área de concentração Produtos Naturais.

CUIABÁ MATO GROSSO - BRASIL 2013

Dados Internacionais de Catalogação na Fonte.

S237m Santos Beirigo, Pâmela Jordana dos. METABÓLITOS ESPECIAIS DAS FOLHAS DE Zanthoxylum riedelianum Engl. e DA CASCA DO CAULE DE Zanthoxylum rigidum Humb. Bonpl. ex Willd (RUTACEAE) / Pâmela Jordana dos Santos Beirigo. -- 2013 xx, 123 f. : il. color. ; 30 cm.

Orientador: Virgínia Claudia da Silva. Dissertação (mestrado) – Universidade Federal de Mato Grosso, Instituto de Ciências Exatas e da Terra, Programa de Pós-Graduação em Química, Cuiabá, 2013. Inclui bibliografia.

1. Zanthoxylum riedelianum. 2. Zanthoxylum rigidum. 3. ciclozanthoxylano B. I. Título.

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Permitida a reprodução parcial ou total, desde que citada a fonte.

PÂMELA JORDANA DOS SANTOS BEIRIGO

METABÓLITOS ESPECIAIS DAS FOLHAS DE *Zanthoxylum riedelianum* Engl. E DA CASCA DO CAULE *Zanthoxylum rigidum* Humb. Bonpl. ex Willd (RUTACEAE)

Dissertação apresentada ao Programa de Pós-Graduação em Química da Universidade Federal de Mato Grosso como requisito parcial à obtenção do título de mestre em química, área de concentração Produtos Naturais.

APROVADA: 31 de outubro de 2013

Prof. Dr. Luciano Ramos Suzart

Vereza A. N. Ribeiro

Prof. Dra. Tereza Auxiliadora Nascimento Ribeiro

andre da Silvy

Prof. Dra. Vigínia Claudia da Silva (Orientadora)

A Deus por todas as experiências vividas durante esses anos, pois fizeram-me crescer moralmente e profissionalmente.

Ao meu pai Sebastião (In memorium), minha mãe Lucinea e minha irmã Priscila que nos momentos mais difíceis de minha vida sempre estiveram presentes, apoiando-me e incentivando-me.

Seja a mudança que você quer ver no mundo

Dalai Lama

AGRADECIMENTOS

A Profa. Virgínia Claudia da Silva pela orientação, ensinamentos, por toda compreensão que teve durante a realização deste trabalho, e especialmente pela amizade que construímos durante esses anos da qual não me esquecerei.

Aos professores Paulo Teixeira de Sousa Junior e Evandro Luiz Dall'Oglio do Laboratório de Pesquisa Química em Produtos Naturais.

Aos professores do Programa de Pós Graduação em Química pelos ensinamentos e colaboração.

Aos amigos do Laboratório de Pesquisa Química de Produtos Naturais o meu eterno agradecimento pela amizade, simpatia e troca de conhecimento.

A todos meus colegas do PPGQ sem exceção, pelo bom relacionamento durante este período.

Ao Prof. Mario Geraldo de Carvalho da Universidade Federal Rural do Rio de Janeiro pela contribuição com as análises dos experimentos de Ressonância Magnética Nuclear em 1D e 2D e pela disposição em auxiliar nas elucidações estruturais imprescindíveis para a determinação das estruturas.

A banca examinadora, pelas sugestões e correções apresentadas neste trabalho.

A Universidade Federal de Mato Grosso pela oportunidade de realização deste trabalho.

A CAPES pela bolsa de estudo concedida.

A todos que, de algum modo, me ajudaram na realização deste trabalho.

A todos meus familiares pela compreensão e carinho.

Ao Eduardo por todo amor e carinho que tem me proporcionado durante todos esses anos.

Enfim, muito obrigada!!!

SUMÁRIO

1. INTRODUÇÃO	1
1.1. REVISÃO BIBLIOGRÁFICA	3
1.1.1. FAMÍLIA RUTACEAE	3
1.2. O GÊNERO ZANTHOXYLUM	7
1.3. A ESPÉCIE Zanthoxylum riedelianum4	7
1.4. A ESPÉCIE Zanthoxylum rigidum4	8
2. OBJETIVOS4	.9
3. PROCEDIMENTO EXPERIMENTAL4	.9
3.1. MATERIAIS E EQUIPAMENTOS	.9
3.1.1. Suportes para cromatografia4	.9
3.1.2. Solventes5	50
3.1.3. Reveladores5	0
3.1.4. Equipamentos5	51
3.2. METODOLOGIA	51
3.2.1. Material vegetal de Zanthoxylum riedelianum5	52
3.2.2. Preparação do Extrato de Zanthoxylum riedelianum5	52
3.2.3. Fracionamento do extrato ZRFLM (<i>Zanthoxylum riedelianum</i> Folhas Extra Metanólico)5	to 52
3.2.4. Fracionamento da fração ZRFLFC (<i>Zanthoxylum riedelianum</i> Folhas Fraçã Clorofórmio)5	io 53
3.2.5. Fracionamento da fração ZRFLFA (<i>Zanthoxylum riedelianum</i> Folhas Fraçã Acetato de Etila)5	io 55
3.2.6. Fracionamento da fração ZRFLMResíduo (<i>Zanthoxylum riedelianum</i> Folha Fração Hidrometanólica resíduo)5	as 57
3.3. Material vegetal de Zanthoxylum rigidum5	8
3.3.1. Preparação do Extrato de Zanthoxylum rigidum5	;9
3.3.2. Fracionamento do extrato ZRgCFE (<i>Zanthoxylum rigidum</i> casca do cau fração hidroetanólica)5	le 59

	3.3.3.	Fracionamento do extrato ZRgCFEppt (Zanthoxylum rigidum casca do caule
	fração l	nidroetanólica precipitado)60
4.	RESUL	TADOS E DISCUSSÕES62
4	.1. Sul	ostâncias isoladas das folhas de Zanthoxylum riedelianum62
	4.1.1.	Identificação da substância 23763
	4.1.2.	Identificação da substância 23877
	4.1.3.	Identificação da substância 2398
	4.1.4.	Identificação da substância 24088
4	.2. Sul	ostâncias isoladas das cascas do caule de Zanthoxylum rigidum97
	4.2.1.	Identificação da substância 24198
	4.2.2.	Identificação da substância 242103
5.	CONCL	_USÃO115
6.	REFER	ENCIAS BIBLIOGRÁFICAS

LISTA DE FIGURAS

Figura 1. Estrutura da vincristina (A), da vimblastina (B) e irinotecano (C) fármacos com comprovada ação antitumoral
Figura 2. Distribuição geográfica da família Rutaceae em destaque (vermelho)3
Figura 3. Alcaloides derivados do ácido antranílico isolados das plantas da família Rutaceae
Figura 4. Cumarinas isoladas das plantas da família Rutaceae5
Figura 5. Flavonoides isolados das plantas da família Rutaceae6
Figura 6. Limonoides isolados das plantas da família Rutaceae6
Figura 7. Lignanas isoladas das plantas da família Rutaceae7
Figura 8. Terpenoides isolados das plantas da família Rutacaea7
Figura 9. Algumas substâncias isoladas do gênero Zanthoxylum (Rutaceae)
Figura 10. Exemplar da espécie Zanthoxylum riedelianum. (fonte: autora)48
Figura 11. Exemplar da espécie Zanthoxylum rigidum (fonte: RIBEIRO, 2012)48
Figura 12. Substâncias isoladas das folhas de Zanthoxylum riedelianum
Figura 13. Estrutura proposta para o octapeptídeo ciclozanthoxylano B (237)65
Figura 14. Espectro de RMN ¹ H (500 MHz, DMSO-d ₆) da substância 23767
Figura 15. Expansão do espectro de RMN 1 H (500 MHz, DMSO-d ₆) da substância 237 entre δ 6,8 a 9,4 ppm68
Figura 16. Expansão do espectro de RMN ¹ H (500 MHz, DMSO-d ₆) da substância 237, entre δ 1,0 a 5,0 ppm
Figura 17. Espectro de RMN DEPTQ (125 MHz, DMSO-d ₆) da substância 23769
Figura 18. Expansão do espectro de RMN DEPTQ (125 MHz, DMSO-d ₆) da substância 237, entre δ 168,5 a 174,0 ppm70
Figura 19. Expansão do espectro de RMN DEPTQ (125 MHz, DMSO-d ₆) da substância 237, entre δ 126,0 a 139,0 ppm70

Figura 20. Expansão do espectro de RMN DEPTQ (125 MHz, DMSO-d ₆) da substância 237, entre δ 22,0 a 66,0 ppm70
Figura 21. Espectro de RMN COSY [¹ Hx ¹ H] (500 MHz, DMSO-d ₆) da substância 23771
Figura 22. Expansão do espectro de RMN COSY [1 Hx 1 H] (500 MHz, DMSO-d ₆) da substância 237, entre δ 3,5 a 9,5 ppm71
Figura 23. Espectro de RMN HMBC (500/125 MHz, DMSO-d ₆) da substância 23772
Figura 24. Expansão do espectro de RMN HMBC (500/125 MHz, DMSO-d ₆) da substância 237, entre δ_H 7,0 a 9,5 δ_C 167,5 a 177,0 ppm72
Figura 25. Espectro de RMN HSQC (500/125 MHz, DMSO-d ₆) da substância 23773
Figura 26. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO-d ₆) da substância 237, entre δ_H 1,0 a 2,0 δ_C 14 a 33 ppm73
Figura 27. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO-d ₆) da substância 237, entre δ_H 2,0 a 4,0 δ_C 35 a 48 ppm74
Figura 28. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO-d ₆) da substância 237, entre δ_H 6,5 a 8,0 δ_C 122 a 132 ppm74
Figura 29. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO-d ₆) da substância 237, entre δ_H 4,0 a 4,0 δ_C 49 a 69 ppm75
Figura 30. Espectro de NOEDIFF75
Figura 31. Espectro de NOEDIFF76
Figura 32. Espectro de NOEDIFF76
Figura 33. Espectro de massas de alta resolução de 237 obtido através de ionização por eletrospray (EM-ESI) em modo positivo77
Figura 34. Correlações apresentadas no experimento de HMBC para o sinal de hidrogênio em δ 7,56 (H-7)
Figura 35. Correlações apresentadas no experimento de HMBC para os sinais de hidrogênios em δ 7,06 (H-6) e δ 3,77 (H-10)78
Figura 36. Estrutura proposta para o 3,4-dihidroxi-cinamato de metila (238)78
Figura 37. Espectro de RMN ¹ H (500 MHz, CD ₃ OD) da substância 238

Figura 38. Expansão do espectro de RMN ¹ H da (500 MHz, CD ₃ OD) substância 238, entre δ 6,2 – 7,7 ppm80
Figura 39. Espectro de RMN DEPTQ (125 MHz, CD ₃ OD) da substância 23880
Figura 40. Expansão do espectro de RMN DEPTQ (125 MHz, CD ₃ OD) da substância 238, entre δ 50,0 – 115,0 ppm81
Figura 41. Expansão do espectro de RMN DEPTQ (125 MHz, CD ₃ OD) da substância 238, entre δ 120,0 – 165,0 ppm81
Figura 42. Espectro de RMN COSY [¹ Hx ¹ H] (500 MHz, CD ₃ OD) da substância 23882
Figura 43. Espectro de RMN COSY [¹ Hx ¹ H] (500 MHz, CD ₃ OD) da substância 238, entre δ 6,0 a 9,0 ppm
Figura 44. Espectro de RMN HSQC (500/125 MHz, CD ₃ OD) da substância 23883
Figura 45. Expansão do espectro de RMN HSQC (500/125 MHz, CD ₃ OD) da substância 238, entre δ_H 6,0 – 7.5 ppm δ_C 105 – 155 ppm83
Figura 46. Espectro de RMN HMBC (500/125 MHz, CD ₃ OD) da substância 23884
Figura 47. Expansão do espectro de RMN HMBC (500/125 MHz, CD ₃ OD) da substância 238, entre δ_H 6,0 – 7,5 ppm δ_C 105 – 195 ppm84
Figura 48. Estrutura proposta para o ácido protocatecuico (239)
Figura 49. Espectro de RMN ¹ H (500 MHz, CD ₃ OD). da substância 23986
Figura 50 Expansão do espectro de RMN 1 H (500 MHz, CD ₃ OD) da substância 239, entre δ 6,80 – 7,45 ppm
Figura 51. Espectro de RMN DEPTQ (125 MHz, CD ₃ OD) da substância 23987
Figura 52. Expansão do espectro de RMN DEPTQ (125 MHz, CD ₃ OD) da substância 239, entre δ 105 – 175 ppm
Figura 53. Unidades formadas pelos grupos fenil e benzoil(A) e benzamida(B) que compõem a substância 240
Figura 54. Estrutura proposta para a molécula <i>N</i> -benzoilfenilalanilato de <i>N</i> - benzoilfenilalanina (240)
Figura 55. Espectro de RMN ¹ H (500 MHz, CDCl ₃) da substância 24091

Figura 56. Expansão do espectro de RMN ¹ H (500 MHz, CDCl ₃) da substância 240 entre δ 3,0 – 5,0 ppm92
Figura 57. Expansão do espectro de RMN ¹ H (500 MHz, CDCl ₃) da substância 240, entre δ 6,6 – 7,8 ppm92
Figura 58. Espectro de RMN DEPTQ (125 MHz, CDCl ₃) da substância 24093
Figura 59. Expansão do espectro de RMN DEPTQ (125 MHz, CDCl ₃) da substância 240, entre δ 40,0 – 128,0 ppm93
Figura 60. Expansão do espectro de RMN DEPTQ (125 MHz, CDCl ₃) da substância 240, entre δ 135,0 – 170,0 ppm94
Figura 61. Espectro de RMN HSQC (500/125 MHz, CDCl ₃) da substância 24094
Figura 62. Expansão do espectro de RMN HSQC (500/125 MHz, CDCl ₃) da substância 240, entre δ_H 1,0 – 5,0 ppm δ_C 20,0 – 70,0 ppm95
Figura 63. Expansão do espectro de RMN HSQC (500/125 MHz, CDCl ₃) da substância 24095
Figura 64. Espectro de RMN NOESY (500 MHz, CDCl ₃) da substância 24096
Figura 65. Expansão do espectro de RMN NOESY (500 MHz, CDCl ₃) da substância 240 entre δ 2,5 – 7,5 ppm96
Figura 66. Espectro de massas de alta resolução da substância 240 obtido através de ionização por eletrospray (EM-ESI) em modo positivo97
Figura 67. Substâncias isoladas das cascas do caule Zanthoxylum rigidum
Figura 68. Estrutura proposta para o ácido ursólico (241)99
Figura 69. Espectro de RMN ¹ H (500 MHz, C_5D_5N) da substância 241
Figura 70. Expansão do espectro de RMN ¹ H (500 MHz, C_5D_5N) da substância 241, entre δ 0,5 – 5,5 ppm
Figura 71. Espectro de RMN 13 C (125 MHz, C ₅ D ₅ N) da substância 241102
Figura 72. Expansão do espectro de RMN 13 C (125 MHz, C ₅ H ₅ N) da substância 241, entre δ 16 – 36 ppm102
Figura 73. Expansão do espectro de RMN 13 C (125 MHz, C ₅ H ₅ N) da substância 241, 103

Figura 74. Correlações apresentadas no experimento de HMBC para os sinais de Figura 75. Correlações apresentadas no experimento de HMBC para os sinais de hidrogênios δ 7,42 (H-3), δ 7,03 (H-5) e δ 6,92 (H-9).....104 Figura 76. Estrutura proposta para a substância 242.....105 Figura 77. Espectro de RMN ¹H (500 MHz, DMSO – d_6) da substância 242...... 107 Figura 78. Expansão do espectro de RMN ¹H (500 MHz, DMSO – d₆) da substância 242, Figura 79. Expansão do espectro de RMN ¹H (500 MHz, DMSO – d_6) da substância 242, Figura 80. Espectro de RMN DEPTQ (125 MHz, DMSO – d₆) da substância 242. 108 Figura 81. Expansão do espectro de RMN DEPTQ (125 MHz, DMSO – d₆) da substância Figura 82. Espectro de RMN HSQC (500/125 MHz, DMSO – d₆) da substância 242. 109 Figura 83. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO - d₆) da Figura 84. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO - d₆) da Figura 85. Espectro de RMN HMBC (500/125 MHz, DMSO – d₆) da substância 242....111 Figura 86. Expansão do experimento de RMN HMBC (500/125 MHz, DMSO – d₆) da Figura 87. Expansão do experimento de RMN HMBC (500/125 MHz, DMSO – d₆) da Figura 88. Espectro de RMN COSY [1 Hx 1 H] (500 MHz, DMSO – d₆) da substância 242. Figura 89. Expansão do espectro de RMN COSY [1 Hx 1 H] (500 MHz, DMSO – d₆) da Figura 90. Expansão do espectro de RMN COSY [1 Hx 1 H] (500 MHz, DMSO – d₆) da

xiii

LISTA DE TABELAS

Tabela 1. Dados dos espectros de RMN ¹ H e ¹³ C (DMSO-d ₆ 500 e 125 MHz) dasubstância 237.65
Tabela 2. Dados dos espectros de RMN ¹ H e ¹³ C da substância 238 (CD ₃ OD 500 e 125 MHz) comparados com dados da literatura (XIANG et al., 2011)
Tabela 3. Dados dos espectros de RMN ¹ H e ¹³ C da substância 239 (CD ₃ OD 500 e 125 MHz) comparados com dados da literatura (SOUZA FILHO et al., 2006)
Tabela 4. Dados dos espectros de RMN ¹ H e ¹³ C da substância 240 (CDCl ₃ 500 e 125 MHz) comparados com dados da literatura (CATALAN et al., 2003)
Tabela 5. Dados dos espectros de RMN 1 H e 13 C da substância 241 (C ₅ D ₅ N 500 e 125 MHz) comparados com dados da literatura (KRIWACKI & PITNER, 1989)
Tabela 6. Dados dos espectros de RMN ¹ H e ¹³ C da substância 242 (DMSO – d ₆ 500 e 125 MHz) comparados com dados da literatura (TAWEEL et al., 2012)

LISTA DE ESQUEMAS

squema 1. Fracionamento do extrato metanólico das folhas Zanthoxylum riedelianum	ı. 53
squema 2. Fracionamento da fração ZRFLFC	54
squema 3. Fracionamento da fração ZRFLFA.	56
squema 4. Fracionamento da fração ZRFLMResíduo.	58
squema 5. Extração ácido/base da fração ZRgCFE	59
squema 6. Fracionamento de ZRgCFE ppt	61
squema 7. Proposta de fragmentação dos picos do espectro de massas da substâ 40.	ncia 97

LISTA DE QUADROS

Quadro 1: Algumas classes de substâncias isoladas da família Rutaceae	4
Quadro 2: Algumas substâncias isoladas do gênero Zanthoxylum (Rutaceae) e suas respec	tivas
atividades biológicas	8

LISTA DE ABREVIATURAS E SÍMBOLOS

- δ Deslocamento químico (ppm)
- *J* Constante de acoplamento em Hertz
- AcOEt Acetato de etlia
- AcOH Ácido acético
- CC Cromatografia em coluna
- CD₃OD Metanol deuterado
- COSY Correlated spectroscopy
- d Dubleto
- dd Duplo dubleto
- DEPTQ Distortionless Enhancement by Polarization Transfer Including the Detection of

Quaternary Nuclei

DMSO	Dimetil Sulfóxido
EM	Espectro de massas
Gly	Glicina
Hex	Hexano
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Coherence
Hz	Hertz
т	Multipleto
m/z	Relação massa/carga
MeOH	Metanol
MHz	Megahertz
NOEDIFF	Nuclear Overhauser Experiment Difference Espectrum
NOESY	Nuclear Overhauser Effect Correlation Spectroscopy
Phe	Fenilalanina

Pro	Prolina		
RMN ¹ H	Ressonância Magnética Nucelar de hidrogênio		
RMN ¹³ C	Ressonância Magnética Nucelar de carbono - 13		
S	Singleto		
t	Tripleto		
ZRFLFA	Zanthoxylum riedelianum Folhas Fração Acetato de Etila		
ZRFLFC	Zanthoxylum riedelianum Folhas Fração Clorofórmica		
ZRFLFH	FH Zanthoxylum riedelianum Folhas Fração Hexânica		
ZRFLM Zanthoxylum riedelianum Folhas Extrato Metanólico			
ZRFLMResíduo Zanthoxylum riedelianum Folhas Resíduo Hidrometanólico			
ZRgCFE	Zanthoxylum rigidum casca do caule fração hidroetanólica		
ZRgCFEp	pt Zanthoxylum rigidum casca do caule fração hidroetanólica precipitado		

RESUMO

 BEIRIGO, Pâmela Jordana dos Santos, Universidade Federal de Mato Grosso, outubro de 2013. Metabólitos Especiais das folhas de Zanthoxylum riedelianum Engl. e da casca do caule Zanthoxylum rigidum Humb. Bonpl. ex Willd (Rutaceae). Orientadora: Virgínia Cláudia da Silva.

A família Rutaceae conta com cerca de 150 gêneros e 2000 espécies, que estão distribuídas nos trópicos, subtrópicos e regiões temperadas do hemisfério sul. No Brasil está representada por mais ou menos 32 gêneros e 150 espécies. Esta família é caracterizada por produzir uma diversidade de metabólitos, muitos de grande interesse farmacológico. O gênero Zanthoxylum é pertencente à família Rutaceae; muitas espécies deste gênero são empregadas na medicina popular contra distúrbios inflamatórios ou infecções. Nas mais de 200 espécies pertencentes a este gênero são descritas a ocorrência de cumarinas, lignanas, flavonóides, alcalóides, alguilamidas insaturadas e óleos essenciais. Este trabalho descreve o estudo fitoquímico de duas espécies deste gênero: Zanthoxylum rigidum e Zanthoxylum riedelianum. O estudo fitoquímico envolveu desde a preparação dos extratos brutos, seguidos pelo fracionamento e isolamento dos compostos através de diferentes métodos cromatográficos. As análises espectroscópicas permitiram a identificação de substâncias conhecidas e a caracterização de substâncias inéditas. O fracionamento cromatográfico das cascas do caule de Zanthoxylum rigidum conduziu ao isolamento e a identificação, das substâncias N-trans-cafeoiltiramina e o ácido-3-β-hidroxi-us-12-en-28-óico. Das folhas de Zanthoxylum riedelianum isolaram-se substâncias 3,4-dihidroxi-cinamato de metila. ácido protocatecuico. Nas benzoilfenilalanilato de N-benzoilfenilalanina, e um novo octapeptídeo que foi nomeado, ciclozanthoxylano B.

Palavras chaves: Zanthoxylum riedelianum, Zanthoxylum rigidum e ciclozanthoxylano B.

ABSTRACT

BEIRIGO, Pamela Jordana dos Santos, Federal University of Mato Grosso, october 2013.
 Special metabolite Zanthoxylum riedelianum Engl. and Zanthoxylum rigidum
 Humb. Bonpl. ex Willd (Rutaceae). Advisor: Virginia Claudia da Silva.

The family Rutaceae has about 150 genera and 2000 species, which are distributed in the tropics, subtropics and temperate regions of the southern hemisphere. In Brazil is represented by about 32 genera and 150 species. This family is characterized by producing a variety of metabolites, many of great pharmacological interest. The genus Zanthoxylum is belonging to the family Rutaceae, many species of this genus are used in folk medicine against inflammatory disorders or infections. In the more than 200 species belonging to this genus are described occurrence of coumarins, lignans, flavonoids, alkaloids, essential oils and unsaturated alkylamides. This paper describes the phytochemical study of two species of this genus: Zanthoxylum rigidum and Zanthoxylum riedelianum. The phytochemical study involved from the preparation of extracts, followed by fractionation and isolation of compounds using different chromatographic methods. The spectroscopic analysis allowed the identification of substances known and characterization unpublished. Chromatographic fractionation of the stem bark of *Zanthoxylum rigidum* led to the isolation and identification substance N-trans-cafeoiltiramina and acid-3-β-hydroxy-12-us-on-28-oic acid. Leaves isolated Zanthoxylum riedelianum substance 3,4-dihydroxy methyl cinnamate, protocatechuic acid, benzoilfenilalanilato N-N-benzoilfenilalanina and a new octapeptide which was named ciclozanthoxylano B.

Keywords: Zanthoxylum riedelianum, Zanthoxylum rigidum and ciclozanthoxylano B.

1. INTRODUÇÃO

Biodiversidade pode ser definida como a variedade e variabilidade entre organismos vivos e os ecossistemas, nos quais eles interagem (OTA, 1987). Esse termo foi usado pela primeira vez em 1986 e foi o resultado da associação das palavras "diversidade biológica" ou "diversidade biótica" (AZEVEDO, 1998). Dessa maneira, biodiversidade inclui todas as formas de vida, ecossistemas e processos ecológicos.

O Brasil é considerado um país rico em biodiversidade, segundo o Ministério da Saúde (2006), o nosso país é detentor da maior parcela da biodiversidade mundial, em torno de 15 a 20%. Ele possui cinco dos principais biomas sendo designados como floresta amazônica, cerrado, mata atlântica, pantanal e caatinga (CALIXTO, 2000; RATES, 2001; VEIGA-JUNIOR, 2008).

A magnitude da biodiversidade do Estado de Mato Grosso está caracterizada por três regiões biogeográficas, - a Amazônia, o Cerrado e o Pantanal-, dessa forma, nosso estado ostenta uma situação privilegiada, no que se refere à potencialidade dos recursos naturais (FACHIM & GUARIM, 1995).

Plantas são tradicionalmente usadas por populações de todos os continentes no controle de diversas doenças e pragas (NEWMAN et al., 2003). Sabe-se que cerca de 25% das drogas prescritas no mundo vêm de plantas, essa busca por novos fármacos, têm origem em investigações químicas e ou biológicas, que têm fornecido um número considerável de substâncias ativas, sendo que algumas inclusive chegaram até a fase de ensaios clínicos (CRAGG et al., 1997), entre as quais podem ser citadas: a vincristina, vimblastina e irinotecano medicamentos utilizados no tratamento de câncer [(CORREA, 1995); (Figura 1)].

No entanto, o uso potencial de plantas superiores como uma fonte de novas drogas é ainda pobremente explorado. Entre as aproximadamente 500.000 espécies de plantas sobre a terra, somente um pequeno percentual tem sido fitoquimicamente investigado. Sendo assim, o reino vegetal representa um enorme reservatório de moléculas farmacologicamente valiosas a serem descobertas (RATES, 2001).

Figura 1. Estrutura da vincristina (A), da vimblastina (B) e irinotecano (C) fármacos com comprovada ação antitumoral.

1.1. REVISÃO BIBLIOGRÁFICA

1.1.1. FAMÍLIA RUTACEAE

A família Rutaceae Juss., está incluída em Eurosídeas II e pertence à ordem Sapindales. Apresenta como sinapomorfia a presença de glândulas translúcidas em suas folhas (MOCCELINI, 2003). Possui aproximadamente 150 gêneros e 2.000 espécies, com ampla distribuição nas regiões tropicais e subtropicais de todo mundo e temperadas do hemisfério Sul. No Brasil ocorrem aproximadamente 32 gêneros e 150 espécies, sendo os centros de diversidade a Floresta Atlântica e a Amazônia (FARIA et al., 2007).

Figura 2. Distribuição geográfica da família Rutaceae em destaque (vermelho). Fonte: http://www.arbolesornamentales.es/generos.htm

Esta família possui considerável importância na fruticultura destacando-se o gênero *Citrus*. Na medicina alopática algumas espécies do gênero *Pilocarpus*, conhecida popularmente como jaborandi, são utilizadas no tratamento de doenças oftálmicas e calvície, ações atribuídas à presença de um alcaloide chamado pilocarpina. Outro representante é a "arruda" (*Ruta graveolens*) cujo principio ativo é a rutina que apresenta atividade antiespasmódico (RIBEIRO et al., 1999). Diversas espécies são produtoras de boa madeira como o guaratã, *Esenbeckia leiocarpa* (FARIA et al., 2007).

Essa família apresenta uma diversidade de metabólitos especiais (Figuras 3 - 8) destacando-se: os alcalóides (I e II, Figura 3) especialmente os derivados do ácido antranílico, cumarinas (III - V, Figura 4), flavonóides (VI - VIII, Figura 5), limonoides (IX e X, Figura 6), lignanas (XI e XII, Figura 7) e terpenoides (XIII e XIV, Figura 8) (WATERMAN, 1975).

Muitos desses metabólitos possuem variadas atividades biológicas, de grande importância farmacológica (WATERMAN & GRUNDON, 1983), despertando o interesse cada vez maior na investigação fitoquímica dessa família. No quadro 1 são apresentadas algumas das classes de substâncias isoladas da família Rutaceae.

Classe	Substância	Referências
Alcaloide	3 - hidroxi - 1 - metoxi - 10 - metil - 9 -	NGOUMFO et al., 2010
derivado do	acridona (I)	
ácido antranílico		
Alcaloide	1 - hidroxi - 3 - metoxi – 10 - metil - 9 –	NGOUMFO et al., 2010
derivado do	acridona (II)	
ácido antranílico		
Cumarina	Dipetalolactona (III)	RASHID et al, 1991
Cumarina	Xantoxiletina (IV)	GUNATILAKA et al,
		1994
Cumarina	Seselina (V)	GUNATILAKA et al,
		1994
Flavonoide	5,6,7,3',4',5'-hexametoxiflavanona (VI)	PASSADOR et al, 1997
Flavonoide	5,7,8,2',3',4',5'- heptametoxiflavona	FERRACIN et al, 1998
	(VII)	
Flavonoide	Flavona (VIII)	AMBROZIN, 2004
Limonoides	Atalantina (IX)	WU et al, 1997
Limonoides	Dihidroatalantina (X)	WU et al, 1997
Lignanas	Eudesmina (XI)	ZHOU et al., 2011
Lignanas	(1 <i>R</i> ,2 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-2-(3,4-dimetoxifenil)-6-	ZHOU et al., 2011
	(3,4-dihidroxifenil)-3,7-dioxabiciclo	
	[3.3.0] octano (XII)	
Terpenoides	10β-Metoximuurolan-4-en-3-ona (XIII)	CHENG et al., 2005
Terpenoides	10α-Metoxicadinan-4-en-3-ona (XIV)	CHENG et al., 2005

Quadro 1: Algumas classes de substâncias is	soladas da família Rutaceae
---	-----------------------------

Alcaloides derivados do ácido antranílico

Figura 3. Alcaloides derivados do ácido antranílico isolados das plantas da família Rutaceae.

<u>Cumarinas</u>

Figura 4. Cumarinas isoladas das plantas da família Rutaceae.

<u>Flavonoides</u>

VIII

Figura 5. Flavonoides isolados das plantas da família Rutaceae.

<u>Limonoides</u>

<u>Lignanas</u>

Figura 7. Lignanas isoladas das plantas da família Rutaceae.

Terpenoides

Figura 8. Terpenoides isolados das plantas da família Rutacaea.

1.2. O GÊNERO ZANTHOXYLUM

Muitas espécies do gênero Zanthoxylum (Rutaceae) são empregadas na medicina popular contra distúrbios inflamatórios ou infecções. Nas mais de 200 espécies pertencentes a este gênero são descritas a ocorrência de cumarinas, lignanas, flavonoides, alcaloides, alquilamidas insaturadas e óleos essenciais. Estas substâncias importantes propriedades farmacológicas apresentam tais como antitumorais. antibacterianas, antifúngicas, antiinflamatórias, anti-helmínticas, analgésicas е antiagregação plaquetária. (OLIVEIRA et al., 2002).

A seguir, são apresentadas no Quadro 2, algumas substâncias isoladas e suas respectivas atividades farmacológicas e biológicas, presentes no gênero *Zanthoxylum* (Rutaceae).

Quadro 2: Algumas substâncias isoladas do gênero Zanthoxylum (Rutaceae) e suas respectivas atividades biológicas

Espécies	Substâncias isoladas	Atividade	Referência
		biológica/farmacológica	
Zanthoxylum ailanthoides	1: 5,7,8-Trimetoxi cumarina	4, 6, 10: atividade anti- HIV. 18, 20, 23, 4, 25, 26,	CHENG et al., 2005;
	2: O-Metil cedrelopsina		CHEN et al. 2009
	3: Isopimpinellina	27: atividade inibitória	
	4: Decarina	superóxido por 2011.	2011.
	5: Haplopina		
	6: γ-Fagarina	18, 23, 4, 25: atividade inibitória a fMLP/CB – liberação de elastase	
	7: 4-Metoxi-1-metil-2- quinolona	induzida 1 a 12: atividade anti HIV	
	8: (+)-Platildesmina		
	9: (+)-Tetrahidroberberina	13 a 16: atividade antitumoral	
	10: (+)-Tembamida		
	11: O-Metiltembamida		
	12: β - Sitosterol glicosilado		
	13: Feoforbideo - α metil Éster		
	14: Feoforbideo - β metil Éster		
	15: 13 ² - hidroxila (13 ² - <i>S</i>) feoforbídeo - α metil Éster		
	16: 13² - hidroxila (13²- <i>R</i>) feoforbideo - β metil Éster		
	17: Acetato de Lupeol		
	18: Ailanthamida		
	19: N-(4-metoxifenetil)-N-		

metilbenzamida	
20: (2 <i>E</i> ,4 <i>E</i>)- <i>N</i> -isobutil-6- oxohepta-2,4-dienamida	
21: 4-(4'-hidróxi-3'- metilbutóxi)benzaldeído	
22: (<i>E</i>)-metil 4-[4-(3- hidroxipropil)fenoxi]-2- metilbut-2-enoato	
23: Xantiletina	
24: Aesculetina dimetil éter	
25: (+)- <i>epi</i> -sesamina	
26: (-)-hinokinina	
27: Evofolina –B	
28: 6- acetonildiidroqueleritrina	
29: 6 – acetonildiidronitidina	
30: Ácido Sirínguico	
31: β – amirina	
32: Arnotianamida	
33: Aurapteno	
34: Bergapteno	
35: Bocconolina	
36: Braylina	
37: Confusamelina	
38: Dictamina	
39: Dihidroavicina	
40: Dihidroqueleritrina	
41: Edulitina	
42: Evolitrina	
43: Friedelina	

26: (+) hinokinina	
44: Hidrangetina	
45: <i>p</i> – hidroxibenzaldeído	
46: Isoarnotianamida	
47: Laniulactona	
48: Lupenona	
49: Lupeol	
50: Luvangetina	
51: (±) – lioniresinol	
52: (+) – marmesina	
53: Metil palmitato	
54: 10β-metoximuurolan-4- en-3-ona	
55: 10α-metoxycadinan-4- en-3-ona	
56: 6 – metoxiqueleritrina	
57: Nitidina	
58: Norqueleritrina	
59: Oxiavicina	
60: Óxido de Cariofileno	
61: Oxiqueleritrina	
62: Oxinitidina	
63: Pteleína	
64: Pregnenolona	
65: Queleritrina	
66: Quercetina	
67: Robustina	
68: (+)-sesamina	
69: Sesaminona	

	70: (+)-siringaresinol		
	71: β–sitosterol		
	72: Estigmasterol		
	73: Skimmianina		
	74: Spatulenol		
	75: Squaleno		
	76: Tetracosil furelato		
	77: (-)-tetrahidroberberina		
	78: 2 – tridecanona		
	79:6, 7, 8-trimetóxicumarina		
	80: Umbeliferona		
	81: Vanilina		
Zanthoxylum	82: Asarinina	Antinociceptiva e anti-	GUO et al., 2011
armatum	83: Eudesmina	inflamatória.	
	84: Fargesina		
	85: Horsfieldina		
	86: Kobusina		
	87: Pinoresinol-di-2,2- dimetilalil		
	88: Planispina A		
	68: Sesamina		
Zanthoxylum	24: Aesculetina dimetil éter	94,98, 73, 67,102:	CHEN et al.,
avicerinae	89: Avicennol	geração de íon superóxido por neutrófilos humanos.	2000
	90: (7'S,8'S)-bilagrewina		
	91: (7'S,8'S)-5- dimetóxibilagrewina	73: atividade inibitória a fMLP/CB – liberação de	
	92: (7'S,8'S)-5-O-dimetil-4'-O- metilbilagrewina	eiastase induzida.	
	93: (7'S,8'S)-nocomtal		

	38: dictamnina	
	94: (7'S,8'S)-4'- <i>O</i> - metilcleomiscosina D	
	95: (+)-9'- <i>O</i> -(<i>Z</i>)-feruloil-5,5'- dimethoxylariciresinol	
	96: (+)-9'- <i>O</i> -(<i>E</i>)-feruloil-5,5'- dimetoxilariciresinol	
	97: (<i>E</i>)-3-(2,2-dimetil-2 <i>H</i> - cromen-6-il)prop-2-enal	
	98: Cleomiscosina D	
	99: Escopoletina	
	79: 6, 7, 8,- trimetóxicoumarina	
	50: Luvangetina	
	100: Avicennol metil éter	
	6: . γ-fagarina	
	67: Robustina	
	73: Skimmianina	
	101: Isodictamina	
	7: 4-metóxi-1-metil-2- quinolona	
	41: Edulitina	
	102 : Integrifoliolina:	
	103: Metil (<i>E</i>)-4-(3'-metil-2'- eniloxi)cinamato	
	104: (-)-siringaresinol	
	71: β – sitosterol	
Zanthoxylum buesgenii	105: Buesgeniina	TANE et al.,
	106: Dimetilmatairesinol	2000
	107: Metilpluviatilol	
	68: Sesamina	

Zanthoxylum caudatum Zanthoxylum chiloperone	 108: Savina 109: Liriodenina 68: Sesamina 110: <i>Trans</i> – Avicennol 	 108,109 e 68: atividade antimicrobiana 110: Antiproliferativa contra células-tronco 	NISSANKA et al., 2001 FERREIRA et al., 2002
	 111: Canthin-6-ona 112: 5 – metoxi – 6- cantinona 113: Cantin-6-ona <i>N</i>-óxido 89: Avicenol 58: Norqueleritrina 	humanas de câncer. 111: atividade tripanocida e atividade leishmanicida 112: atividade leishmanicida	
Zanthoxylum davyi	 114: Cheleritrina 35: Bocconolina 40: Diidroqueleritrina 65: Queleritrina 115: 6 – hidróxidiidroqueleritrina 116: Meso - sesamina 117: 6 – metóxi – 7 - dimetildiidroqueleritrina 118: 4 – metóxi – 1 – metil – 2(1H) – quinolinona 	114: atividade antimicrobiana -	TARUS et al., 2006.
Zanthoxylum ekmanii	 73: Skimmianina 38: Dictamina 10: Tembamida 68: Sesamina 49: Lupeol 71: β – sitosterol 		FACUNDO et al., 2005.
∠anthoxylum heitzii	119: Cloreto de 6- metilnitidina	406 407 400 400-	BONGUI et al., 2005.
∠antnoxylum	hidróxiprop-1-enil)fenoxi]-3-	atividade anti-	CHEN et al.,

integrifoliolum	metilbutano-2,3-diol	inflamatória	2007
	121: álcool 4-hidróxi-3-(3- metil-2-butenil) cinamílico		
	122: 2,6-bis(1-feniletil)fenol		
	123: 2,4-bis(1-feniletil)fenol		
	124: 18- dimetilparaensidimerina C		
	125: Paraensidimerina C		
	126: N-metilflindersina		
	5: Haplopina		
	6: γ-Fagarina		
	127: (–)-simulanol		
	128: (–)-balanofonina		
	129: (–)-5- metóxibalanofonina		
	130: Iso-escopoletina		
	24: Aesculetina dimetil éter		
	79: 6, 7, 8 – trimetóxicumarina		
	131: Evofolina – C		
	132: 1-[(3-metilbut-2- enil)oxil]-2-metoxi-4-(prop-1- en-3-ol)benzeno		
	133: Siringaldeído		
	134: β-sitostenona		
	135: Estigmasta-4,2,2-dien- 3-ona		
	71: β – sitosterol		
	72: Estigmasterol		
Zanthoxylum Iemairei	136. 10-O-dimetil-17-O- metilisoarnottianamida137. 6-acetonil-<i>N</i>-metil-	136, 137: atividade larvicida contra larvas de mosquito.	TALONTSI et al., 2011.
	diidrodecarina	136, 137, 57, 114: atividade larvicida	
----------------------------	---	---	-----------------------
	57: Nitidina	contra o vetor presente no mosquito da malária	
	65: Queleritrina		
	114: Cheleritrina		
Zanthoxylum leprieurii	138: 3 – hidroxi – 1 – metoxi – 10 – metil – 9 -acridona	138 a 140: atividade atitumoral	NGOUMFO et al., 2010.
	139: 1 – hidroxi – 3 – metoxi - 10-metil – 9 –acridona		
	140: 1,3 – dihidroxi – 2 – metoxi - 10-metil -9 – acridona		
Zanthoxylum	71: β – sitosterol	71, 12 e 141: atividade	ARRIETA et al.,
neomannianum	12: β - Sitosterol glicosilado	antiprotozoana	2000.
	141: Asarina		
Zanthoxylum	142: Limonellona		
IImonella	82: (-)-Asarinina		2012.
	38: Dictamina		
	10: (-)-Tembamida		
	143: Diidroalatamida		
	144: N-nornitidina		
Zanthoxylum	40: Diidroqueleritrina		MARTIN et al.,
e	144: N-nornitidina		2005.
	58: Norqueleritrina		
	4: Decarina		
Zanthoxylum monophyllum	145: Monophyllidina	145, 147, 148:	PATIÑO et al.,
	146: Thalifolina	antibactericida.	2011.
	147: Berberina	146, 148: atividade	
	148: Jatrorrhizina	anurungica.	
Zanthoxylum	149: Cubebina	149: atividade	BASTOS et al.,

naranjillo		antiinflamatória	2001.
Zanthoxylum nitidum	 150: Zanthomuurolanina 151: <i>Epi</i>zanthomuurolanina 152: Zanthocadinaninas A 153: Zanthocadinaninas B 154: <i>Epi</i>zanthocadinanina B 155: (<i>E</i>)-4-(4-Hidroxi-3- metilbut-2- eniloxi)benzaldeído 156: (<i>E</i>)-Metil 3-(4-((<i>E</i>)-4- hidroxi-3-metilbut-2- eniloxi)fenil)acrilato 157: (<i>Z</i>)-Metil 3-(4-((<i>E</i>)-4- hidroxi-3-metilbut-2- eniloxi)fenil)acrilato 158: Ácido 4-(3-Metilbut-2- eniloxi) fenil)acrilato 158: Ácido 4-(3-Metilbut-2- eniloxi) benzóico 159: 4-Hiroxibenzaldeído 133: Siringaldeído 160: 6- Acetonildiidroqueleritrina 161: 6-Acetonil-8-O- dimetildihidroqueleritrina 162: Piperitol 3,3-dimetilalil éter 4: Decarina 24: Aesculetina dimetil éter 79: 6, 7, 8,- trimetóxicoumarina 99: Escopoletina 25: (+)-<i>epi</i>-sesamina 68: (+) - Sesamina 69: Sesaminona 	 161, 4, 24, 25, 68, 126, 6: atividade inibitória contra geração de íon superóxido. 160, 161, 4, 25, 68, 126: inibição de fMLP (liberação de elastase induzida) 99 e 175: atividade antiinflamatória 	YANG et al., 2008. CHEN et al., 2010.

	126. N-metilflindersina		
	6: γ-Fagarina		
	163. 2,6-Dimetóxi- <i>p</i> - benzoquinona		
	164. Indol-3-carboxaldeído		
	65: Queleritrina		
	165: Rhoifolina A		
	166: Dihidroqueleritrinil-8- acetaldeído		
	59: Oxiavicina		
	46: Isoarnotianamida		
	32: Arnotianamida		
	167: Integriamida		
	168: Liriodenina		
	38: Dictamina		
	57: Nitidina		
	40: Diidroqueleritrina		
	169: 8- hidroxidiidroqueleritrina		
	170: 8- metóxidihidroqueleritrina		
	171: Sanguinarina		
	172: Coptisina		
	173: Berberrubina		
	174: 2 - quinolona, N - metilflindersina		
	175: Furoquinolina		
	99: Escopoletina		
Zanthoxylum	82: Asarinina	70: atividade	YANG et al.,
planispinum	176: Epipinoresinol	antimicrobiana contra Staphylococcus aureus	2009.

		5	
	177: 3'- <i>O</i> - dimetilepipinoresinol	e Bacillus subtilis	
	178: Biplanispina A		
	84: Fargesina		
	85: Horsfieldina		
	83: Eudesmina		
	179: Pinoresinol monometil éter		
	70: Siringaresinol		
	180: Yangambina		
	181: Pinoresinol		
	182: (1 <i>R</i> ,2 <i>S</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(4- hidróxi-3-metóxifenil)-2-(3,4- diidróxifenil)-3,7- dióxabiciclo[3.3.0]octano		
	183: Lariciresinol dimetil éter		
Zanthoxylum piperitum	184: Hiperosideo	184, 185, 186 e 66: atividade antioxidante	JEONG et al., 2011.
1-1	66: Quercetina		
	185: Quercetrina		
	186: Afzelina		
Zanthoxylum	187: Zanthpodocarpina A	187 e 188: atividade	ZHOU et al., 2011
pouocarpum	188: Zanthpodocarpina B	antinnamatona	2011.
	83: Eudesmina		
	189: (1 <i>R</i> ,2 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-2-(3,4- dimetóxifenil)-6-(3,4- diidróxifenil)-3,7- dioxabiciclo[3.3.0]octano		
	190: Dimetóxisamina		
	191: rel-(1 <i>R</i> ,5 <i>R</i> ,6 <i>S</i>)-6-(4- hidroxi-3-metóxifenil)-3,7- dioxabiciclo[3.3.0]octan-2- ona		
	192: Magnona A		

Zanthoxylum quinduense	 49: Lupeol 144: Nornitidina 28: 6- acetonildiidroqueleritrina 4: Decarina 193: (-)-6- carboximetildiidroqueleritrina 65: Queleritrina 147: Berberina 194: <i>N</i>- metiltetrahidrocolumbamina 195: <i>N</i>- metiltetrahidropalmatina 196: (-)-isotembetarina 197: (-)-xylopinidina 	LADINO et al., 2010.
Zanthoxylum riedelianum	198: 6-acetonil- <i>N</i> -metil- diidrodecarina	FERNANDES et al., 2009.
	199: 6-acetonildiidroavicina	
	49: Lupeol	
	28: 6- acetonildiidroqueleritrina	
Zanthoxylum rigidum	200: Campesterol	MOCCELINI et al., 2009.
Ŭ	71: Sitosterol	, ,
	72: Estigmasterol	
	201: N-metilatanina	
	202: Sacarose	
	203: Hesperidina	
	28: 6- acetonildiidroqueleritrina	
Zanthoxylum rhoifolium	204: 3 metóxi-4-(3-metilbut- 2-enil)-2H-cromen-2-ona	CUCA et al., 2007

	38: Dictamina		
	126: N-metilflindersina		
Zanthoxylum scandens	205: Zanthodiona	4,6, 8: atividade anti-	CHENG et al., 2008.
	4: Decarina		
	58: Norqueleritrina		
	61: Oxiqueleritrina		
	62: Oxinitidina		
	32: Arnotianamida		
	38: Dictamina		
	73: Skimmianina		
	5: Haplopina		
	6: γ-Fagarina		
	8: (+)-Platildesmina		
	81: Vanilina		
	206: Metil vanilinato		
	207: Ácido vanílico		
	76: Tetracosil furelato		
	208: 2-(4-hidroxifenil)etil hexacosanoato		
	68: (+) –Sesamina		
	49: Lupeol		
	71: β – sitosterol		
	72: Estigmasterol		
Zanthoxylum schinifolium	209: Schinifolina	209 e 73: atividade de impedimento de alimentação	LIU et al., 2009.
	73: Skimmianina		
Zanthoxylum syncarpum	210: 3-Metóxiaegelina	213 e 4: atividade antiplasmodial contra <i>Plasmodium falciparum</i>	ROSS et al., 2005; ROSS et al., 2004.
	211: 3-Metóxi-7- acetilaegelina		
	212: 3-Metóxi-7-		

	cinnamoilaegelina		
	213: Syncarpamida		
	214: (+)-S-marmesina		
	4: Decarina		
Zanthoxylum	109: Liriodenina	68, 109, 215 e 216: atividade antimicrobiana	NISSANKA et al., 2001.
retraspermum	68: Sesamina		
	215: 8 – acetonildihidronitidina		
	216: 8 - acetonildihidroavicina		
Zanthoxylum	49: Lupeol		SILVA et al.,
แก่งบลรรมเมล	68: Sesamina		2000.
	32: Arnotianamida		
	217: Espatulenol		
	218: α - bisabolol		
	219: <i>N</i> -metilantranilato de metila		
	220: acetato de citronelila		
	58: Norqueleritrina		
	33: Aurapteno		
	221: Imperatorina		
	222: Xantotoxina		
	223: O-prenilumbeliferona		
	71: β – sitosterol		
	72: Estigmasterol		
Zanthoxylum wutaiense	224: Wutaiensol metil éter	228, 229, 232, 6 e 38: apresentam atividade antituberculose contra <i>Mycobacterium</i> <i>tuberculosis</i> H37Rv	HUANG et al.,
	225: Dimetóxiwutaiensol metil éter		
	226: metil wutaiensato		
	227: metil 7-		

hidróxianodendroato	
228: metil 7- metóxianodendroato	
229: Wutaiensal	
230: Wutaifuranol	
231: 7-metóxiwutaifuranol	
232: 7-metóxiwutaifuranal	
233: Metil wutaifuranato	
234: Metil 7- metóxibenzofuran-5- carboxilato	
235: 7 – metóxibenzofuran-5- carboxaldeído	
236: Wutaipiranol	
6: γ-Fagarina	
38: Dictamina	

ОСН₃

•

 $H_{3}CO \rightarrow H_{3}CO \rightarrow H_{3}CO \rightarrow H_{3}CO \rightarrow H_{1}CH_{3}CO \rightarrow H_{1}CH_{3}CO \rightarrow H_{1}CH_{3}CH_{2}CH_{3$

O

N

58

OCH3

H₃CO

.

∕₿`

`сн₃

H₃CO

(CH₂)₂₃CH₃

°0

90. R₁=R₃: OCH₃; R₂: OH **91.** R₁: H; R₂: OH; R₃ OCH₃ **92.** R₁: OH; R₂=R₃: OCH3 **93.** R₁: OCH₃; R₂: OH; R₃:H

соон

206. R: COOCH₃ **207.** R: COOH

ĢН

ဂူ

Figura 9. Algumas substâncias isoladas do gênero Zanthoxylum (Rutaceae).

1.3. A ESPÉCIE Zanthoxylum riedelianum

Zanthoxylum riedelianum (Figura 10) é conhecida popularmente como maminha, maminha-de-porca, mamica-de-cadela, lagarto, lagarto amarelo. Planta aculeada de 8 a 18 metros de altura, dotada de copa e perfeitamente globosa, frequentemente encontrase nas capoeiras mais abertas com tronco de 40 a 60 cm de diâmetro. Floresce nos meses de maio a julho. Os frutos amadurecem a partir do mês de outubro, chegando até dezembro. É utilizada na medicina popular contra manchas na pele e reumatismo. No Brasil tem sua ocorrência em Minas Gerais, São Paulo e Mato Grosso (CORRÊA, 1931).

Figura 10. Exemplar da espécie Zanthoxylum riedelianum. (fonte: autora).

1.4. A ESPÉCIE Zanthoxylum rigidum

Em Mato Grosso a espécie *Zanthoxylum rigidum* (Figura 11) é denominada popularmente, como mamica-de-cadela ou mamica-de-porca. Esta planta apresenta-se como um arbusto, com ramos quando novos curtamente pilosos com acúleos longos castanhos; folhas subcoriáceas denso-pilosas nas duas faces, imparipinadas ou paripinadas com 2-3 pares de folíolos ovais ou ovais oblongos, sésseis; panícula terminal piramidada, pilosa; flores sésseis aglomeradas; cálice com os lascínios ovais obtusos; pétalas três vezes maiores que as sépalas, ciliadas; estames o dobro mais comprido que as pétalas; estames com filetes de 4 mm de comprimento, anteras suborbiculares, alvas (MOCCELINI, 2003).

Figura 11. Exemplar da espécie Zanthoxylum rigidum (fonte: RIBEIRO, 2012).

Dessa forma, o interesse pelo estudo fitoquímico por plantas do gênero *Zanthoxylum*, se mostra pela gama de atividades farmacológicas e biológicas relatadas na literatura. Esse trabalho é uma complementação da base de dados fitoquímicos das espécies do gênero *Zanthoxylum*. As espécies *Zanthoxylum riedelianum* e *Zanthoxylum rigidum* já possuem estudos, porém as substâncias desse trabalho se mostraram diferentes das relatadas na literatura.

2. OBJETIVOS

Isolar substâncias através de fracionamento e purificação de extratos de Zanthoxylum riedelianum e Zanthoxylum rigidum com solventes orgânicos, utilizando técnicas cromatográficas convencionais.

Identificar as estruturas das substâncias isoladas através de métodos físicos de determinação estrutural, tais como RMN ¹H e ¹³C uni e bidimensionais e espectrometria de massas.

> Contribuir para o conhecimento da composição química do gênero Zanthoxylum.

3. PROCEDIMENTO EXPERIMENTAL

Este trabalho foi desenvolvido no Laboratório de Pesquisa em Química de Produtos Naturais do Departamento de Química da Universidade Federal de Mato Grosso (UFMT) em conjunto com os outros colaboradores de outros Laboratórios, como o professor Dr. Mário Geraldo de Carvalho do Laboratório de Produtos Naturais da Universidade Federal Rural do Rio de Janeiro (UFRRJ).

3.1. MATERIAIS E EQUIPAMENTOS

3.1.1. Suportes para cromatografia

- Sílica gel 60 GF₂₅₄ Vetec para cromatografia em camada delgada analítica
- Sílica gel 60 GF₂₅₄ Vetec para cromatografia em camada delgada preparativa

- Cromatofolhas de alumínio 20x20 cm da Macherey-Nagel GmBH & Co, com 0,20 mm de sílica gel 60 com indicador UV_{254}

- Sílica gel 60 (230-400 mesh) Vetec cromatografia em coluna a pressão normal
- Sephadex LH-20 da GE Heathcare Life Sciences
- Celulose microcristalina da Synth

3.1.2. Solventes

• Solventes grau cromatográfico da Dinâmica Química Contemporânea Ltda e Vetec Química Fina:

Acetato de etila Ácido acético Clorofórmio Diclorometano Etanol Hexano

Hidróxido de amônio

Metanol

• Solventes deuterados da Sigma-Aldrich:

Clorofórmio

DMSO

Metanol

Piridina

3.1.3. Reveladores

- Reagente de Dragendorff
- Solução de vanilina ácida (WAGNER et al., 1984)
- Câmara de Luz UV (comprimento de onda 254 e 365 nm)
3.1.4. Equipamentos

- Espectrômetros de RMN
 Bruker TopSpin 500 (500 MHz para ¹H e 125 MHz para ¹³C) DQ/UFRRJ
- Espectrômetro de massas

Espectrômetro de massas de alta resolução EM-ESI com ionização elétron spray (ESI) e detecção de íons positivo, micrOTOF-QII, Compass NPPN/UFRJ

• Evaporador rotatório sob pressão reduzida

Buchi Switzerland modelo R – 210, banho Buchi Switzerland modelo B – 419 e circulador de água refrigerado da Marconi equipamentos para laboratório

- Estufas
 Estufa de Secagem e Esterilização modelo 315 SE da FANEM
 Estufa a vácuo modelo MA 030/12 da Marconi
- Balanças
 Balança Analítica Libroc modelo AEG 220 da Shimadzu
 Balança semianalitica modelo BG 400 da Gehaka
- Ultrassom
 Ultrasonic Cleaner da Unique
- Processamento dos espectros
 Programa ACD/LABS versão 12.0

3.2. METODOLOGIA

Os procedimentos químicos foram realizados no Laboratório de Pesquisa em Química de Produtos Naturais do Departamento de Química da Universidade Federal de Mato Grosso (UFMT).

3.2.1. Material vegetal de Zanthoxylum riedelianum

As folhas de *Zanthoxylum riedelianum* foram coletadas no dia 19/09/2011, na Fazenda Nossa Senhora de Fátima, localizada na estrada Poconé-Porto Cercado, km 8, município de Poconé/MT. A coleta foi realizada em latitude de 16° 18' 50.3" S, longitude 056° 33'23.8", altitude 128 m. A ratificação taxonômica foi realizada pelo professor Dr. Arnildo Pott, do Herbário Central da Universidade Federal do Mato Grosso do Sul, onde está depositada uma exsicata de CGMS nº 33228.

3.2.2. Preparação do Extrato de Zanthoxylum riedelianum

Após secagem das folhas de *Zanthoxylum. riedelianum* (3,0 kg), o mesmo foi triturado e submetido à extração por maceração a frio com metanol agitando ocasionalmente, utilizando-se 8 L de solvente em cada extração. Realizou-se este processo em sete ciclos de cinco dias. O metanol das extrações foi concentrado em evaporador rotatório a 40°C, sob pressão reduzida, para obtenção do extrato metanólico **ZRFLM** (407,4 g).

3.2.3. Fracionamento do extrato ZRFLM (*Zanthoxylum riedelianum* Folhas Extrato Metanólico)

O extrato **ZRFLM** (407,4 g) foi suspenso em 1500 mL da mistura MeOH/H₂O (7:3) e submetido a partição líquido - líquido com os solventes hexano, CHCl₃, e AcOEt, obtendose as respectivas frações após a remoção do solvente: hexano-**ZRFLFH** (3,97 g), CHCl₃-**ZRFLFC** (8,94 g), AcOEt- **ZRFLFA** (17,45 g), além do resíduo hidrometanólico-**ZRFLMResíduo** (158,77 g).

Esquema 1. Fracionamento do extrato metanólico das folhas *Zanthoxylum riedelianum*.(a) Partição líquido-líquido, eluente: hexano, clorofórmio, acetato de etila e metanol.

3.2.4. Fracionamento da fração ZRFLFC (*Zanthoxylum riedelianum* Folhas Fração Clorofórmio)

A fração **ZRFLFC** (8,94 g) foi fracionada em CC com gel de sílica, eluída com CHCl₃/AcOEt e AcOEt/MeOH (gradiente), sendo coletadas 194 frações de 125 mL.

As frações 170 e 171 (45,0 mg) foram reunidas após análise em CCDA e submetida em CC utilizando sephadex LH-20 e eluída com MeOH 100%, obtendo-se 25 frações de 5 mL. Após análise cromatográfica das frações 8-14 (20,0 mg), foram reunidas por similaridade cromatográfica e submetida a CC com sephadex LH-20 e eluída com CHCl₃/MeOH (1:1), obtendo-se um total de 21 frações de 5 mL. Após a evaporação do solvente as frações 8-15 foram reunidas e resultou em 6,0 mg de um sólido branco amorfo, que depois de análises espectroscópicas RMN ¹H e ¹³C, uni- e bidimensionais identificou-se uma mistura de peptídeos, sendo que o componente majoritário é um novo octapeptídeo denominado de ciclozanthoxylano B (**237**).

Esquema 2. Fracionamento da fração ZRFLFC.

(a) CC, $\Phi \times h = 5,6 \times 32,0$ cm, sílica gel 60 (70-230 mesh), eluente: clorofórmio; clorofórmio:acetato de etila (9:1), (8:2), (7:3), (6:4), (1:1), (4:6), (1:9); acetato de etila;

acetato de etila:metanol (9:1), (8:2), (7:3), (6:4), (1:1); metanol. Foram coletadas 194 frações.

(b) CC, $\Phi x h = 3,5 x 31, 5 cm$, sephadex LH-20, eluente: metanol. Foram coletadas 25 frações.

(c) CC, Φ x h = 3,5 x 31, 5 cm, sephadex LH-20, eluente: clorofórmio:metanol (1:1). Foram coletadas 21 frações.

(d) As frações 8-15 após a evaporação do solvente, resultou em um precipitado (6mg) branco amorfo.

3.2.5. Fracionamento da fração ZRFLFA (*Zanthoxylum riedelianum* Folhas Fração Acetato de Etila)

A fração **ZRFLFA** (17,45 g) foi fracionada em CC com gel sílica, eluída com Hex/AcOEt e AcOEt/MeOH (gradiente), sendo coletadas 195 frações de 125 mL.

Após avaliação por CCDA foram reunidas de acordo com semelhança do perfil cromatográfico as frações 40-62 (250,0 mg), e submetida a novo processo cromatográfico em CC com sephadex LH-20 e eluída com CHCl₃/MeOH (8:2), obtendo-se 32 frações de 5 mL. As frações 12-17 (12 mg), foram reunidas pois demonstraram similaridade cromatográfica após realizar CCDA, após a evaporação do solvente verificou-se a formação de um precipitado amorfo de coloração amarela, onde o mesmo foi submetido a análises espectroscópicas de RMN ¹H e ¹³C, uni- e bidimensionais resultando na molécula 3,4 – dihidroxi cinamato de metila (**238**).

A reunião das frações 63-66 (150,0 mg) foi submetida a novo processo cromatográfico em CC com sephadex LH-20 e eluída com CHCl₃/MeOH (8:2), obtendo-se 36 frações de 5mL. Com essas frações foi realizado CCDA que após análise foram reunidas por similaridade cromatográfica as seguintes frações 22-34 (40,0 mg) e submetidas a CC com sephadex LH-20 e eluída com CHCl₃/MeOH (1:1), obtendo-se 28 frações de 5 mL, sendo que as frações 16-21, foram reunidas devido a similaridade do perfil cromatográfico apresentado pela CCDA, resultando-se em 10 mg de um precipitado em forma de agulhas de coloração marrom que após análises espectroscópicas de RMN ¹H e ¹³C, uni- e bidimensionais, foi identificado como sendo o ácido protocatecuico (**239**).

Esquema 3. Fracionamento da fração ZRFLFA.

(a) CC, $\Phi \times h = 6,7 \times 33,0$ cm, sílica gel 60 (70-230 mesh), eluente: hexano; hexano:acetato de etila (9:1), (8:2), (7:3), (6:4), (1:1), (4:6), (1:9); acetato de etila; acetato de etila:metanol (9:1), (8:2), (7:3), (6:4), (1:1), (4:6), (1:9); metanol; metanol:dietilamina (1:1). Foram coletadas 195 frações.

(b) CC, $\Phi \times h = 3,5 \times 31, 5$ cm, sephadex LH-20, eluente: clorofórmio:metanol (8:2). Foram coletadas 32 frações. (c) As frações 12-17 após a evaporação do solvente, resultaram em um precipitado (12 mg) amorfo de coloração amarela.

(d) CC, $\Phi \times h = 3,5 \times 31, 5$ cm, sephadex LH-20, eluente: clorofórmio:metanol (1:1). Foram coletadas 36 frações.

(e) CC, $\Phi \times h = 3.5 \times 31$, 5 cm, sephadex LH-20, eluente: clorofórmio:metanol (1:1). Foram coletadas 28 frações.

(f) As frações 16-21 após a evaporação do solvente, resultaram em um precipitado (10mg) em forma de agulhas de coloração marrom

3.2.6. Fracionamento da fração ZRFLMResíduo (*Zanthoxylum riedelianum* Folhas Fração Hidrometanólica resíduo)

A fração **ZRFLMResíduo** (80,0 g) foi submetida a uma CC empacotada com mistura de sílica gel e celulose (1:1), eluída com CHCl₃/AcOEt, AcOEt/MeOH e MeOH/Dietilamina (gradiente), sendo coletadas 238 frações de 125 mL.

As frações 111-135, após a evaporação do solvente e reunião resultou-se em 8 mg de um precipitado branco amorfo que após análises espectroscópicas de RMN ¹H e ¹³C, uni- e bidimensionais foi identificado como sendo a molécula *N*-benzoilfenillalanilato de *N*-benzoilfenillalanina (**240**).

Esquema 4. Fracionamento da fração ZRFLMResíduo.

(a) CC, $\Phi \times h = 6 \times 39$ cm, sílica gel 60 (70-230 mesh) e celulose (1:1), eluente: clorofórmio; clorofórmio:acetato de etila (9:1), (8:2), (7:3), (6:4), (1:1), (4:6), (1:9); acetato de etila; acetato de etila:metanol (9:1), (8:2), (7:3), (6:4), (1:1), (4:6), (1:9); metanol; metanol:dietilamina (9:1), (8:2), (7:3), (6:4), (1:1), (4:6), (1:9); dietilamina. Foram coletadas 238 frações.

(b) Após a evaporação do solvente resultou em um precipitado (8 mg) branco amorfo.

3.3. Material vegetal de Zanthoxylum rigidum

As cascas do caule de *Zanthoxylum rigidum* foram coletadas na Transpantaneira, km 33, município de Poconé/MT, no dia 09/05/2011. A ratificação taxonômica foi feita por comparação com a exsicata n°38648, pela botânica Dra. Rosilene Rodrigues Silva, responsável pelo Herbário Central da Universidade Federal do Mato Grosso.

3.3.1. Preparação do Extrato de Zanthoxylum rigidum

Após secagem da casca do caule (2,97 kg), o mesmo foi triturado e submetido à extração através de maceração a frio com a mistura de solventes EtOH/H₂O (7:3). Os solventes das extrações foram concentrados em evaporador rotatório a 40°C, sob pressão reduzida, obtendo-se o extrato hidroalcóolico **ZRgCFE** (250,0 g).

3.3.2. Fracionamento do extrato ZRgCFE (*Zanthoxylum rigidum* casca do caule fração hidroetanólica)

Essa extração foi realizada com objetivo de isolar alcaloides, pois quando realizou as análises por CCDA do extrato, ao serem reveladas com reagente de Dragendorff, apresentaram manchas alaranjadas que indicam assim a presença de alcaloides.

O extrato **ZRgCFE** (215,0 g) foi solubilizado em 500 mL da solução MeOH/AcOH 2%, posteriormente foi adicionado mais 500 mL de solução aquosa de AcOH 10%. Após 24 horas em repouso na geladeira, essa mistura foi alcalinizada com NH₄OH até atingir o pH 9 em seguida deixou-se na geladeira por mais um dia. Houve a formação de um precipitado (**ZRgCFEppt**) que foi separado da fase líquida por meio de filtração.

Esquema 5. Extração ácido/base da fração ZRgCFE.

(a) ZRgCFE foi solubilizado com uma solução MeOH/AcOH 2%, em seguida foi acidificado com uma solução aquosa de AcOH 10%.

(b) Foi alcalinizado com uma solução de NH₄OH.

(c) Houve a formação de um precipitado (ZRgCFEppt).

3.3.3. Fracionamento do extrato ZRgCFEppt (*Zanthoxylum rigidum* casca do caule fração hidroetanólica precipitado)

O **ZRgCFEppt** (50,0 g) foi fracionado em CC empacotada com mistura de sílica gel e celulose (1:1) eluída com MeOH/Dietilamina com aumento gradual de polaridade, onde foram coletadas 58 frações.

A fração 6 (11 mg) demonstrou a presença de um precipitado branco amorfo que foi separado da fase líquida e após análises espectroscópicas de RMN ¹H e ¹³C, uni- e bidimensionais foi identificado com sendo o ácido ursólico (**241**).

A fração 13 (10 mg) também apresentou a formação de um precipitado branco amorfo que foi separado da fase líquida e submetido a análises espectroscópicas de RMN ¹H e ¹³C, uni- e bidimensionais e identificado com sendo a molécula *N-trans*-cafeoiltiramina (**242**).

Esquema 6. Fracionamento de ZRgCFE ppt.

(a) CC, $\Phi \ge h = 6 \ge 41$ cm, sílica gel 60 (70-230 mesh) e celulose (1:1), eluente: metanol; metanol:dietilamina (9:1), (8:2), (7:3), (6:4), (1:1), (4:6), (1:9); dietilamina. Foram coletadas 58 frações.

- (b) Formação de um precitado (11 mg) que foi separado da fase líquida.
- (c) Formação de um precitado (10 mg) que foi separado da fase líquida.

4. RESULTADOS E DISCUSSÕES

4.1. Substâncias isoladas das folhas de Zanthoxylum riedelianum

As estruturas das substâncias isoladas das folhas de *Zanthoxylum riedelianum* são mostradas na Figura 12.

Figura 12. Substâncias isoladas das folhas de Zanthoxylum riedelianum.

4.1.1. Identificação da substância 237

A substância **237** (Figura 13) foi isolada das folhas de *Zanthoxylum riedelianum*, da fração clorofórmio como sendo um sólido branco amorfo e identificada em mistura, sendo que para a identificação foram considerados somente os sinais de maior intensidade dos espectros de RMN ¹H e ¹³C.

O espectro de RMN ¹H (Figura 14) apresentou seis sinais em δ 9,17 (*t*), 8,30 (*t*), δ 8,12 (*d*), 7,91(t), 7,72 (*dl*) e 7,45 (*dl*) que pelo espectro de HSQC (Figura 28) nota-se que estes sinais não estão ligados a carbonos e, portanto foram atribuídos aos hidrogênios ligados a heteroátomos (nitrogênio da porção amida). Os sinais entre δ 2,90 a 4,59 foram relacionados a hidrogênios associados aos carbonos metínicos e metilênicos entre δ 37,20 e 58,90, compatíveis com carbonos ligados a nitrogênios. Se esses carbonos fossem do tipo carbinólicos os valores de deslocamento químico seriam em torno de 70 ppm. O espectro de DEPTQ (Figura 18) mostrou oito sinais de carbonila de amida em δ 170,70; 170,30; 169,0; 169,20; 173,90; 171,80; 172,0 e 172,10, cinco carbonos metínicos em δ 55,30; 52,80; 56,30; 60,60 e 58,90, e onze carbonos metilênicos em 21,60; 24,60; 28,40; 31,40; 36,40; 36,70; 37,20; 42,20; 43,30 e 47,20 (2x); além dos carbonos metínicos em anel aromáticos centrados em δ 128 a 132 (Tabela 1).

A análise dos espectros de RMN de ¹H (Figura 14) em associação com os espectros de HSQC (Figura 27) permitiu atribuir os sinais em δ 3,20 a 4,0 (*m*) aos carbonos metilênicos em δ 42,20, 43,70, 43,30 de três unidades de glicina e os sinais em δ 0,90 a 3,60 aos carbonos metilênicos em δ 28,40; 24,60; 31,40; 21,60; 47,20 de duas unidades de prolina.

As três unidades de fenilalanina foram identificadas pelos sinais do sistema aromático monossubstituído δ 7,20 a 7,40 (*m*) e dos hidrogê'nios de carbonos metilênicos CH₂- β em δ 2,90 a 3,20 (*m*) que acoplam pelo COSY (Figura 21) com os hidrogênios CH- α em δ 4,38 (*m*), 4,59 (*m*) e 4,67 (*m*). Os experimentos de NOE (Figura 30, 31 e 32) permitiram verificar as proximidades entre os resíduos de aminoácidos que constituem o octapeptídeo. Pelo espectro de NOE foi verificado que irradiando na frequência do sinal em δ 8,12 (*d*) [HN-Phe¹] resultou NOE em δ 7,45 (*dl*) da segunda unidade de fenilalanina [HN-Phe²] (experimento k) e irradiando na frequência do sinal em 9,70 (*t*) [HN-Phe⁵] resultou NOE em 7,91 (*t*) [HN-Gly³] (experimento h), indicando as proximidades dessas unidades.

As unidades de glicina foram sugeridas com base nos sinais dos carbonos metilênicos em δ 42,20, 43,30 e 43,70 acoplados aos hidrogênios em δ 3,20 a 3,40 (*m*) vistos no HSQC (Figura 27). Irradiando na frequência do sinal em 7,91 (*t*) [HN-Gly³] resultou NOE em 7,45 (*dl*) [HN-Phe²] (experimento g), irradiando na frequência em δ 9,17 (*t*) [HN-Gly⁴] resultou NOE no sinal em δ 4,38 [CH α -Phe⁵] e no sinal em 7,91 (*t*) [HN-Gly³] (experimento a), e por fim, irradiando na frequência em 8,03 (*t*) [HN-Gly⁶] resultou NOE em 7,72 (*dl*) [HN-Phe⁵] (experimento e).

Para as unidades de prolina foram atribuídos os carbonos metínicos α C=O em δ 58,90 e 60,60 acoplados aos hidrogênios em δ 4,28 (*dl*) e 4,42 (*dl*), respectivamente; e os carbonos metilênicos atribuídos com base na análise dos espectros de HSQC (Figura 29) CH₂- β [δ 1,80-2,20/28,4], CH₂- γ [δ 2,0/24,60] e CH₂- δ [δ 3,20-3,60/47,20] – Pro⁷ e CH₂- β [δ 1,40-2,20/31,40], CH₂- γ [δ 0,90-1,50/21,60] e CH₂- δ [δ 3,20-3,60/47,20] – Pro⁸. Pelo espectro de NOEDIFF verificou-se que irradiando na frequência em δ 4,28 (*dl*) [α CH-Pro⁷] observou NOE em δ 4,42 [α CH-Pro⁸] (experimento b).

A expansão do HMBC (Figura 24) na região de δ_H 7,0– 9,5 ppm e δ_C 167,5 – 177,0 ppm foi fundamental para visualizar alguns acoplamentos que permitiram definir a sequência do peptídeo. O espectro de HMBC (Figura 23) apresentou o acoplamento entre os sinais em δ 4,59 (*m*) [α CH-Phe¹] com 170,70 [C=O-Phe¹] e 138,90 [C-1'-Phe¹]; δ 3,10-3,20 [β CH-Phe¹] com 128,0-132,0 [C-2'/6'-Phe²] e 55,30 [α CH-Phe¹], confirmando a conexão Phe¹-Phe². Os acoplamentos entre δ 3,20-4,0 (*m*) [α CH-Gly³] com 169,2 [C=O-Gly⁴] e 169,0 [C=O-Gly³] confirmaram a conexão Gly³-Gly⁴. O acoplamento entre δ 9,17 (*t*) [HN-Gly⁴] com 173,90 [C=O-Phe⁵] confirmou a conexão Gly⁴-Phe⁵. Os acoplamentos entre δ 8,03 (s) [HN-Gly⁶] com 172,0 [y CH-Pro⁷] e 60,60 [a CH-Pro⁷] e entre δ 3,20-4,0 (*m*) [y CH₂-Pro⁷] com 173,90 [C=O-Phe⁵] confirmaram a conexão Phe⁵-Gly⁶-Pro⁷. Os acoplamentos entre δ 3,20-3,60 (*m*) [γ CH₂-Pro⁷] com 172,10 [C=O-Pro⁸] e entre 170,70 [C=O-Phe¹] confirmaram a conexão Pro⁷-Pro⁸-Phe¹. Com os dados obtidos em massas de alta resolução modo positivo (Figura 33) conclui-se que sua estrutura é compatível com fórmula molecular C₄₃H₅₀N₈NaO₈ com o fragmento m/z 829,3646 relativo ao aduto sódico [M+Na⁺]. As análises de todos esses dados confirmam a sequência de aminoácidos da estrutura do ciclo-[Phe¹-Phe²-Gly³-Gly⁴-Phe⁵-Gly⁶-Pro⁷-Pro⁸] como sendo o ciclopepitídeo Ciclozanthoxylano B. Ciclopeptídeos tem sido encontrado em espécies de Zanthoxylum como o ciclozanthoxylano A nas folhas de Zanthoxylum rigidum (RIBEIRO et al., 2012).

Figura 13. Estrutura proposta para o octapeptídeo ciclozanthoxylano B (237).

Tabela	1.	Dados	dos	espectros	de	RMN	^{1}H	е	¹³ C	(DMSO-d ₆	500	е	125	MHz)	da
substân	cia	237.													

	HSQC				
	$_{\delta H}$ (1D e 2D-COSY)	δC	HMBC	NOE diff	
Phe ¹					
α	4,59 (m)	55,3	170,7/138,9		
β	3,10-3,2(m)	37,2 128-132/55,3			
1'	-	138,9			
2'-6'	7,2-7,4(m)	128-132			
C=O	-	170,7			
N-H	8,12(d)	-		HN-Phe ²	
Phe ²					
α	4,67	52,8	138,1		
β	2,9-3,1	36,7	128-132/52,8		
1'	-	138,1			
2'-6'		128-132			
C=O		170,3			
N-H	7,45(dl)	-	169,0	HN-Phe ¹	

Gly ³				
α	3,2-4,0(m)	42,2	169,2/169.0	
C=O	-	169.0		
N-H	7,91(t)	-	169,0/169,2	HN-Phe ²
Gly⁴				
α	3,2-4,0(m)	43,7	169,2/169.0	
C=O	-	169,2		
N-H	9.17(t)	-	173,9	α-Phe ⁵ /HN-Gly ³
Phe⁵				
α	4,38(m)	56,3	173,9/137,6	
β	3,0;3,15(m)	36,4	173,9/56,3	
1'	-	137,6		
2'-6'	7,2-7,4(m)	128-132		
C=O	-	173,9		
N-H	7,72(dl)	-	173,9	
Gly⁵				
α	3,2-4,0(m)	43,2	172,0/171,8/173,9	
C=O	-	171,8		
N-H	8,03(t)	-	172,0/171.8	HN-Phe⁵
Pro ⁷				
α	4,28(dl)	60,6	171,8/47,2/28,8/24,	α-Pro ⁸
			6	
β	1,80; 2,2(m)	28,4		
γ	2,0(m)	24,6	172,0	
δ	3,2-3,6(m)	47,2	172,1	δ-Pro ⁸
C=O	-	172,0		
Pro ⁸				
α	4,42(dl)	58,9	172,1/47,2/31,4/21,	α-Pro ⁷
			6	
β	1,4; 2,2(m)	31,4		
γ	1,50; 0,90(m)	21,6		
δ	3,2-3,6(m)	47,2	170,7	δ-Pro ⁷
C=O	-	172,1		

Figura 14. Espectro de RMN ¹H (500 MHz, DMSO-d₆) da substância 237.

Figura 15. Expansão do espectro de RMN ¹H (500 MHz, DMSO-d₆) da substância **237** entre δ 6,8 a 9,4 ppm.

Figura 16. Expansão do espectro de RMN ¹H (500 MHz, DMSO-d₆) da substância **237**, entre δ 1,0 a 5,0 ppm.

Figura 17. Espectro de RMN DEPTQ (125 MHz, DMSO-d₆) da substância 237.

Figura 18. Expansão do espectro de RMN DEPTQ (125 MHz, DMSO-d₆) da substância **237**, entre δ 168,5 a 174,0 ppm.

Figura 19. Expansão do espectro de RMN DEPTQ (125 MHz, DMSO-d₆) da substância **237**, entre δ 126,0 a 139,0 ppm.

Figura 20. Expansão do espectro de RMN DEPTQ (125 MHz, DMSO-d₆) da substância **237**, entre δ 22,0 a 66,0 ppm.

Figura 21. Espectro de RMN COSY [¹Hx¹H] (500 MHz, DMSO-d₆) da substância **237**.

Figura 22. Expansão do espectro de RMN COSY [${}^{1}Hx^{1}H$] (500 MHz, DMSO-d₆) da substância **237**, entre δ 3,5 a 9,5 ppm.

Figura 23. Espectro de RMN HMBC (500/125 MHz, DMSO-d₆) da substância 237.

Figura 24. Expansão do espectro de RMN HMBC (500/125 MHz, DMSO-d₆) da substância **237**, entre δ_H 7,0 a 9,5 δ_C 167,5 a 177,0 ppm.

Figura 25. Espectro de RMN HSQC (500/125 MHz, DMSO-d₆) da substância 237.

Figura 26. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO-d₆) da substância **237**, entre δ_H 1,0 a 2,0 δ_C 14 a 33 ppm.

Figura 27. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO-d₆) da substância **237**, entre δ_H 2,0 a 4,0 δ_C 35 a 48 ppm.

Figura 28. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO-d₆) da substância 237, entre δ_H 6,5 a 8,0 δ_C 122 a 132 ppm.

Figura 29. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO-d₆) da substância 237, entre δ_H 4,0 a 4,0 δ_C 49 a 69 ppm.

Figura 30. Espectro de NOEDIFF.

Figura 31. Espectro de NOEDIFF.

Figura 32. Espectro de NOEDIFF.

Figura 33. Espectro de massas de alta resolução de 237 obtido através de ionização por eletrospray (EM-ESI) em modo positivo.

4.1.2. Identificação da substância 238

A substância **238** (Figura 36) foi isolada das folhas de *Zanthoxylum riedelianum* da fração acetato de etila, como sendo um precipitado amorfo de coloração amarela.

Essa substância apresentou em seu espectro de RMN de ¹H (Figura 38, Tabela 2) sinais na região de aromáticos entre δ 6,80 (1H, *d*, *J* = 8,5Hz, H-3) e δ 6,95 (1H, *d*, *J* = 7,5 Hz, H-2), δ 7,06 (1H, *s*) em sistema trissubstituído, sinais de hidrogênios em δ 6,27 (1H, *d*, H-7) e δ 7,56 (1H, *d*, H-8) cuja constante de acoplamento com *J* = 16 Hz se refere a um acoplamento do tipo *trans* e um sinal na região de baixa frequência de uma metoxila em δ 3,77 (*s*, 3H). No espectro de DEPTQ (Figuras 40 e 41, Tabela 2) foi observado um sinal do carbono em δ 50,61 relativo a metoxila C-10, e dois sinais de carbonos quaternários em δ 145, 41 e δ 148, 20, atribuído aos carbonos C-4 e C-5, respectivamente sinal de uma carbonila em δ 168,40 atribuída ao C-9.

Pelo espectro de HSQC (Figura 45) foi possível atribuir os valores dos deslocamentos químicos dos seguintes carbonos hidrogenados, C-2 [6,95/121,55], C-3 [6,80/113,70], C-6 [7,06/115,08], C-7 [7,56/145,56], C-8 [6,27/113,40].

O espectro de HMBC (Figura 47) permitiu observar as correlações entre δ 7,56 (H-7) com δ 113,70 (C-6), δ 113,40 (C-8), δ 121,55 (C-2) e δ 168,40 (C-9); entre δ 7,06 (H-6) com δ 121,55 (C-2), δ 145,41 (C-4) e δ 148,20 (C-5) e entre δ 3,77 (H-10) com δ 168,40 (C-9) conforme observado na figura 34 e 35:

Figura 34. Correlações apresentadas no experimento de HMBC para o sinal de hidrogênio em δ 7,56 (H-7).

Figura 35. Correlações apresentadas no experimento de HMBC para os sinais de hidrogênios em δ 7,06 (H-6) e δ 3,77 (H-10).

Com os resultados obtidos pelos experimentos de RMN 1D e 2D e comparação coma literatura (XIANG et al., 2010), foi verificado que a substância **238** (Figura 36) correspondia ao 3,4-dihidroxi-cinamato de metila que está sendo relatado pela primeira vez no na espécie *Zanthoxylum riedelianum*.

Figura 36. Estrutura proposta para o 3,4-dihidroxi-cinamato de metila (238).

С	238	*Literatura	
	¹ H	¹³ C	¹³ C
1	-	126,27	127,4
2	6,95(<i>d</i> , <i>J</i> = 7,5 Hz)	121,55	122,5
3	6,80(<i>d</i> , <i>J</i> = 8,5 Hz)	115,38	115,1
4	-	145,41	145,9
5	-	148,20	149,1
6	7,06 (s)	113,69	-
7	7,56 <i>(d, J</i> = 16 Hz)	145,56	146,5
8	6,27 <i>(d, J</i> = 16 Hz)	113,40	116,4
9	-	168,40	167,9
10	3,77 (s)	50,61	51,5

Tabela 2. Dados dos espectros de RMN ¹H e ¹³C da substância **238** (CD₃OD 500 e 125 MHz) comparados com dados da literatura (XIANG et al., 2011)

*XIANG et al., 2010, Solvente: DMSO-d₆ (600 MHz).

Figura 37. Espectro de RMN ¹H (500 MHz, CD₃OD) da substância 238.

Figura 38. Expansão do espectro de RMN ¹H da (500 MHz, CD₃OD) substância **238**, entre δ 6,2 – 7,7 ppm.

Figura 39. Espectro de RMN DEPTQ (125 MHz, CD₃OD) da substância 238.

Figura 40. Expansão do espectro de RMN DEPTQ (125 MHz, CD₃OD) da substância **238**, entre δ 50,0 – 115,0 ppm.

Figura 41. Expansão do espectro de RMN DEPTQ (125 MHz, CD₃OD) da substância **238**, entre δ 120,0 – 165,0 ppm.

Figura 42. Espectro de RMN COSY [¹Hx¹H] (500 MHz, CD₃OD) da substância 238.

Figura 43. Espectro de RMN COSY [¹Hx¹H] (500 MHz, CD₃OD) da substância **238**, entre δ 6,0 a 9,0 ppm.

Figura 44. Espectro de RMN HSQC (500/125 MHz, CD₃OD) da substância 238.

Figura 45. Expansão do espectro de RMN HSQC (500/125 MHz, CD₃OD) da substância 238, entre δ_H 6,0 – 7.5 ppm δ_C 105 – 155 ppm.

Figura 46. Espectro de RMN HMBC (500/125 MHz, CD₃OD) da substância 238.

Figura 47. Expansão do espectro de RMN HMBC (500/125 MHz, CD₃OD) da substância **238**, entre δ_H 6,0 – 7,5 ppm δ_C 105 – 195 ppm.

4.1.3. Identificação da substância 239

A substância **239** (Figura 48) foi isolada das folhas de *Zanthoxylum riedelianum* da fração acetato de etila, como sendo um sólido em formato de agulhas de coloração marrom.

O espectro RMN ¹H (Figura 50) apresentou sinais na região de hidrogênios aromáticos, um dubleto em 6,82 (J = 8,5 Hz), um duplo dubleto em 7,43 (J = 8,0 Hz e 3,72 Hz) e outro dubleto em 7,46 (J = 2,5 Hz), atribuídos, respectivamente, aos hidrogênios H-5, H-6 e H-2 (Tabela 3). No espectro de DEPTQ (Figura 52) foram observados sinais que, em comparação com a literatura (SOUZA FILHO et al., 2006), caracterizaram essa substância que é derivada de um ácido benzóico conhecida como ácido protocatecuico.

Figura 48. Estrutura proposta para o ácido protocatecuico (239).

Tabela 3. Dados dos espectros de RMN ¹H e ¹³C da substância **239** (CD₃OD 500 e 125 MHz) comparados com dados da literatura (SOUZA FILHO et al., 2006)

С	239	*Literatura	
	¹ H	¹³ C	¹³ C
1	-	121,99	129,9
2	7,46 (<i>d</i> , <i>J</i> = 2,5 Hz)	116,31	117,8
3	-	144,64	146,0
4	-	150,04	151,4
5	6,82 (<i>d</i> , <i>J</i> = 8,5 Hz)	114,33	115,7
6	7,43 (<i>dd</i> , $J = 8$ Hz e	122,46	123,7
	3,72 Hz)		
1'	-	169,09	170,2

* SOUZA FILHO et al., 2006, Solvente: CDCl₃ (300 MHz).

Figura 49. Espectro de RMN ¹H (500 MHz, CD₃OD). da substância 239.

Figura 50 Expansão do espectro de RMN ¹H (500 MHz, CD₃OD) da substância **239**, entre δ 6,80 – 7,45 ppm.

Figura 51. Espectro de RMN DEPTQ (125 MHz, CD₃OD) da substância 239.

Figura 52. Expansão do espectro de RMN DEPTQ (125 MHz, CD₃OD) da substância **239**, entre δ 105 – 175 ppm

4.1.4. Identificação da substância 240

A substância **240** (Figura 53) foi isolada das folhas de *Zanthoxylum riedelianum*, da fração metanólica como sendo um precipitado branco amorfo.

O espectro de RMN de ¹H (Figuras 56 e 57) apresentou sinais na região de deslocamento químico de hidrogênios em anel aromático δ 6,70 a 7,73 compatíveis com a presença de vários sistemas aromáticos mono-substituídos: os sinais na região de δ 2,92 a 4,57 correspondem a hidrogênios metilênicos e metínicos. Os duplos dubletes em δ 2,92 (*J*=7,9 e *J*=13,55 Hz), δ 3,03 (*J*=6,95 e *J*=14,20), δ 4,06 (*J*=4,45 e *J*=11,35) e δ 4,57 (*J*=3,15 e *J*=11,35) podem ser considerados como representantes de dois grupos metilênicos com hidrogênios diastereotópicos.

O espectro de correlação espacial homonuclear hidrogênio-hidrogênio (NOESY, Figura 65) evidenciou as correlações entre esses sinais em δ 2,92 (*dd*, 1H, H-3a) e δ 3,03 (*dd*, 1H, H-3b) e inclusive, verificar o acoplamento com os hidrogênios representado pelo multipleto em δ 4,65 (*m*, 1H, H-2) que acopla com os hidrogênios do dubleto do metileno centrado em δ 4,06 (H-1a) e 4,57 (H-1b). Com a análise dos espectros de HSQC (Figuras 62 e 63) foi possível estabelecer as correlações diretas dos carbonos metínicos e metilênicos que correspondia uma unidade na molécula: Unidade A: C-1 [δ_H/δ_C 4,06 e 4,57/65,40], C-2 [δ_H/δ_C 4,65/50,29], C-3 [δ_H/δ_C 2,92 e 3,03/37,26],C-5,9 [δ_H/δ_C 6,70/129,19], C-6,8 [δ_H/δ_C 7,42/128,72], C-7 [δ_H/δ_C 7,25/127,42], C-12,16 [δ_H/δ_C 7,68/127,13], C-13,15 [δ_H/δ_C 7,42/128,69], C-14 [δ_H/δ_C 7,48/132,06], correspondentes na unidade A grupos fenil e benzoil, além desses sinais ainda confirmou-se uma unidade $\delta_{C=O}$ de amida C-10 (δ 167,22) como mostrado na (Figura 53).

O outro sistema presente na molécula é o B, cujo grupo metileno em δ 37,53 (C-3'), contendo os hidrogênios δ 3,24 (*dd*, 6,65 e 13,55 Hz) e 3,32 (*dd*, 6,30 e 13,90 Hz) acomplam entre si e entre o H-2' em δ 4,94 (*d*, 6,60 Hz), como visto no espectro de NOESY (Figura 65), ligado ao carbono metínico δ 54,48, cujo valor é compatível com carbono ligado a nitrogênio. Pela análise do HSQC (Figuras 62 e 63) e de acordo com os dados da literatura (CATALAN et al., 2003), foi possível atribuir os dados de todos os carbonos hidrogenados da unidade B: C-2' [δ_{H}/δ_{C} 4,94/54,48], C-3' [δ_{H}/δ_{C} 3,24 e 3,32 (37,26], C-5',9' [δ_{H}/δ_{C} 7,25/129,32], C-6',8' [δ_{H}/δ_{C} 7,35/128,45], C-14' [δ_{H}/δ_{C} 7,50/131,42] e outros que correspondiam a uma unidade de éster com C-1' (δ 171,92), $\delta_{C=0}$ de amida em 167,44 (C-10'), que justifica a unidade benzamida em B (Figura 53).

Figura 53. Unidades formadas pelos grupos fenil e benzoil(A) e benzamida(B) que compõem a substância **240**.

A Tabela 4 mostra todas as atribuições dos deslocamentos químicos da substância 240 com base nas correlações do HSQC e comparação com os dados da literatura (CATALAN et al., 2003) para a identificação do *N*-benzoilfenilalanilato de *N*-benzoilfenilalanina, isolado anteriormente de fungos como *Aspergillus flavipes* (CLARK et al., 1977), *Penicillium canadense* (McCORKINDALE et al., 1978) e de plantas *Piper aurantiacatum* (Piperaceae) (BANEJERI et al., 1981), *Medicago polymorpha* (Leguminosae) (TALAPATRA et al., 1983) e *Piptadenia gonoacantha* (CARVALHO et al., 2010). Com a análise de todos os dados espectrométricos, fundamentais para a elucidação estrutural da substância **240**, conclui-se que sua estrutura é compatível com fórmula molecular $C_{33}H_{34}N_2O_4$ com o aduto sódico m/z 529,2124 [M+Na⁺] obtido em massas de alta resolução (Figura 66).

Figura 54. Estrutura proposta para a molécula *N*-benzoilfenilalanilato de *N*-benzoilfenilalanina (**240**).

			*Literatura
С	δ _H (<i>m</i> , <i>J</i> Hz)	δ _c	
1	4,06 (<i>dd</i> , 4,45 e	65,40	65,42
	11,35)		
	4,57 (<i>dd</i> , 3,15 e		
	11,35)		
2	4,65 (<i>m</i>)	50,29	50,28
3	2,92 (<i>dd</i> , 7,9 e 13,55)	37,26	37,26
	3,03 (<i>dd</i> , 6,95 e		
	14,20)		
4	-	137,16	137,74
5,9	6,70 (<i>d</i> , 8,2)	129,19	129,16
6,8	7,42 (<i>t</i> , 7,6)	128,72	128,71
7	7,25 (<i>m</i>)	127,42	127,17
10	-	167,22	167,21
11	-	134,19	134,20
12,16	7,68 (<i>d</i> , 7,90)	127,13	127,11
13,15	7,42 (<i>t</i> , 7,60)	128,69	128,61
14	7,48 (<i>t</i> , 7,85)	132,06	132,02
1'	-	171,92	171,90
2'	4,94 (<i>d</i> , 6,60)	54,48	54,47
3'	3,24 (<i>dd</i> , 6,65 e	37,53	37,56
	13,55)		
	3,32 (<i>dd</i> , 6,30 e		
	13,90)		
4'	-	135,74	135,14
5',9'	7,25 (<i>m</i>)	129,32	129,30
6',8'	7,42 (<i>t</i> , 7,6)	128,90	128,72
7'	7,25 (<i>m</i>)	126,83	126,77
10'	-	167,44	167,42
11'	-	133,32	133,32

Tabela 4. Dados dos espectros de RMN ¹H e ¹³C da substância **240** (CDCl₃ 500 e 125 MHz) comparados com dados da literatura (CATALAN et al., 2003)

12',16'	7,73 (<i>d</i> , 7,85)	127,06	127,04	
13',15'	7,35 (<i>t</i> , 7,55)	128,45	128,69	
14'	7,50 (<i>t</i> , 7,25)	131,42	131,39	

*CATALAN et al., 2003, Solvente: CDCl₃ (500 MHz)

Figura 55. Espectro de RMN ¹H (500 MHz, CDCl₃) da substância 240.

Figura 56. Expansão do espectro de RMN ¹H (500 MHz, CDCl₃) da substância **240** entre δ 3,0 – 5,0 ppm.

Figura 57. Expansão do espectro de RMN ¹H (500 MHz, CDCl₃) da substância **240**, entre δ 6,6 – 7,8 ppm.

Figura 58. Espectro de RMN DEPTQ (125 MHz, CDCl₃) da substância 240

Figura 59. Expansão do espectro de RMN DEPTQ (125 MHz, CDCl₃) da substância **240**, entre δ 40,0 – 128,0 ppm.

Figura 60. Expansão do espectro de RMN DEPTQ (125 MHz, CDCI₃) da substância **240**, entre δ 135,0 – 170,0 ppm.

Figura 61. Espectro de RMN HSQC (500/125 MHz, CDCl₃) da substância 240.

Figura 62. Expansão do espectro de RMN HSQC (500/125 MHz, CDCl₃) da substância 240, entre δ_H 1,0 – 5,0 ppm δ_C 20,0 – 70,0 ppm.

Figura 63. Expansão do espectro de RMN HSQC (500/125 MHz, CDCI₃) da substância 240.

Figura 64. Espectro de RMN NOESY (500 MHz, CDCl₃) da substância 240.

Figura 65. Expansão do espectro de RMN NOESY (500 MHz, $CDCl_3$) da substância 240 entre δ 2,5 – 7,5 ppm.

Figura 66. Espectro de massas de alta resolução da substância 240 obtido através de ionização por eletrospray (EM-ESI) em modo positivo.

Esquema 7. Proposta de fragmentação dos picos do espectro de massas da substância **240**.

4.2. Substâncias isoladas das cascas do caule de Zanthoxylum rigidum

As estruturas das substâncias isoladas das cascas do caule de *Zanthoxylum rigidum* são mostradas na figura 67.

Figura 67. Substâncias isoladas das cascas do caule Zanthoxylum rigidum.

4.2.1. Identificação da substância 241

A substância **241** (Figura 68) foi isolada do extrato hidroetanólico da casca do caule de *Zanthoxylum rigidum* como sendo um sólido branco amorfo.

O espectro de RMN de ¹H (Figura 70) mostrou sinais que podem ser atribuídos as sete metilas alifáticas com deslocamentos químicos em δ 0,89, 0,95, 0,87, 1,01, 1,22 e 1,24. O sinal em δ 3,85, correspondente ao hidrogênio H-3, apareceu como um multipleto, sugerindo sua posição axial em relação ao grupo hidroxílico. Também foi observado nesse espectro, um singleto largo em δ 5,49, referente ao hidrogênio olefínico H-12 e um dubleto em δ 2,64 com J =1,65 Hz e J = 12,0 Hz resultado do acoplamento entre os hidrogênios H-18 e H-19, característico de triterpenóides pentacíclicos com esqueleto do tipo urs-12-eno. Outra característica importante de triterpenos pertencentes à classe dos

ursanos é o sinal do carbono sp² quaternário em δ 138,10 (C-13). Este carbono recebe uma maior proteção devido ao efeito γ exercido pela metila ligada ao C-19, visto nos espectros de RMN de ¹³C (Figura 73), podemos observar esse mesmo efeito em relação ao mesmo carbono na estrutura do ácido oleanólico (SOBRINHO et al., 1991). Também foi detectada a presença do carbono olefínico em δ 124,50 (C-12), carbinólico em δ 76,98 (C-3) e carboxílico em δ 178,71 (C-28). Os demais sinais são de carbonos sp³ quaternários, metínicos, metilênicos e metílicos. Estes dados foram comparados com os descritos na literatura (KRIWACKI& PITNER, 1989) (Tabela 5) e estão de acordo com a estrutura proposta para o ácido ursólico (ácido-3- β -hidroxi-urs-12-en-28-óico). Este triterpeno, muito comum em plantas, está sendo registrado pela primeira vez na espécie *Zanthoxylum rigidum*.

Figura 68. Estrutura proposta para o ácido ursólico (241).

241			*Literatura
С	¹ H	¹³ C	¹³ C
1		37,93	39,1
2		27,53	28,1
3	3,85 (<i>m</i>)	76,98	78,1
4		38,20	39,5
5		54,67	55,8
6		18,00	18,8

Tabela 5. Dados dos espectros de RMN ¹H e ¹³C da substância **241** (C_5D_5N 500 e 125 MHz) comparados com dados da literatura (KRIWACKI & PITNER, 1989)

7		32,42	33,6
8		38,33	40,0
9		46,90	48,1
10		36,28	37,3
11		22,75	23,6
12	5,49 (<i>m</i>)	124,50	125,7
13		138,10	139,3
14		41,35	42,5
15		28,80	28,7
16		23,76	24,9
17		46,90	48,1
18	2,64 (dd, 1,65 e 11,79)	52,40	53,6
19		38,81	39,5
20		38,20	39,4
21		29,91	31,1
22		36,12	37,5
23	1,24 (s)	27,63	28,8
24	1,01 (s)	15,39	16,5
25	0,87 (s)	16,30	15,7
26	1,05 (s)	16,34	17,5
27	1,22 (s)	22,74	23,9
28		178,71	179,8
29	0,95 (s)	17,60	17,5
30	0,89 (s)	20,22	21,4

* KRIWACKI & PITNER, 1989, Solvente: CD₃OD (500 MHz)

Figura 69. Espectro de RMN ¹H (500 MHz, C₅D₅N) da substância 241.

Figura 70. Expansão do espectro de RMN ¹H (500 MHz, C_5D_5N) da substância **241**, entre δ 0,5 – 5,5 ppm.

Figura 72. Expansão do espectro de RMN ¹³C (125 MHz, C_5H_5N) da substância 241,

entre δ 16 – 36 ppm.

Figura 73. Expansão do espectro de RMN ¹³C (125 MHz, C₅H₅N) da substância **241**, entre δ 40 – 176 ppm.

4.2.2. Identificação da substância 242

A substância **242** (Figura 76) foi isolada do extrato hidroetanólico da casca do caule de *Zanthoxylum rigidum* como sendo um sólido branco amorfo.

O espectro de RMN ¹H (Figuras 78 e 79, Tabela 6) apresentou δ 8,00 relativo à N-H, dois dubletos em δ 6,35 (J = 15,65Hz, H-2) e δ 7,42 (J = 15,65 Hz, H-3) de hidrogênios olefínicos cuja constante de acoplamento define a relação *trans*, sinais relativos a hidrogênios em dois anéis aromáticos de hidrogênios aromáticos sendo dois dubletos em δ 6,74 (J = 7,95Hz, H-7') e em δ 7,05 (J = 7,95 Hz, H-8'), integrados para 2H cada um, indicando a presença de um anel *para* substituído, com um sistema de hidrogênios AA'BB'; e três sinais de hidrogênios aromáticos em δ 6,78 (d, J = 8,1 Hz, H-8), δ 6,92 (d, J = 8,1 Hz, H-9) e δ 7,03 (s, H-5) sugerindo um anel aromático trissubistituído em sistema

AMX; e, ainda dois tripletos (J = 8,0 Hz) em δ 2,77 (H-2') e δ 3,48 (H-1'), relativos a hidrogênios metilênicos vicinais num sistema isolado.

O espectro de COSY ¹Hx¹H (Figuras 89 e 90) confirmou os acoplamentos entre os dois hidrogênios em δ 7,05 com os hidrogênios em δ 6,74 que garantiram o anel *para*-substituído, os quais foram atribuídos a H-4'/H-8' e H-5'/H-7', respectivamente. O anel trissubstituído foi definido através dos acoplamentos entre os hidrogênios em δ 6,78 (H-8) e 6,92 (H-9) em *orto*, e o acoplamento entre os hidrogênios δ 6,35 (H-2) e 7,42 (H-3) que indicou a presença do sistema α , β -insaturado.

Pela análise do espectro de HSQC (Figuras 83 e 84) puderam ser estabelecidas as correlações diretas dos carbonos metínicos: C-2 [6,35/116,93], C-3 [7,42/140,83], C-5 [7,03/113,67], C-8 [6,78/114,88], C-9 [6,92/120,77], C-4', 8' [7,05/129,37] e C-5',7' [6,74/114,88] e metilênicos: C-1' [3,48/41,19] e C-2' [2,77/34,41].

O espectro de HMBC (Figuras 86 e 87) permitiu que se definissem os carbonos quaternários e, que a unidade derivada do ácido caféico da substância 242 fosse atribuída corretamente. Pelo espectro de HMBC (Figura 85) puderam ser estabelecidas as correlações entre os hidrogênios.

Figura 74. Correlações apresentadas no experimento de HMBC para os sinais de hidrogênios em δ 7,05 (H-4') e δ 7,05 (H-8').

Figura 75. Correlações apresentadas no experimento de HMBC para os sinais de hidrogênios δ 7,42 (H-3), δ 7,03 (H-5) e δ 6,92 (H-9).

Portanto, através da análise dos dados espectroscópicos a amida fenólica foi identificada como sendo *N-trans*-cafeoiltiramina. Esta substância já havia sido detectada anteriormente em *Solanum* subg. Leptostemonum (Silva et al., 2004). A atribuição de todos os dados de carbonos metínicos, metílicos e quaternários e a respectiva comparação com os dados existentes na literatura (TAWEEL et al., 2012), está apresentada na Tabela 6.

Figura 76. Estrutura proposta para a substância 242.

С	242	242		
	¹ H	¹³ C	НМВС	¹³ C
1	-	167,91	-	169,0
2	6,35 <i>d J</i> = 15,65Hz	116,98	-	118,5
3	$7,42 \ d \ J = 15,65$	140,83	H-5 e H-9	141,6
	Hz			
4	-	126,90	-	127,1
5	7, 03 s	113,67	H-3 e H-9	114,5
6	-	145,31	-	147,7
7	-	147,37	-	148,5
8	6,78 <i>d J</i> = 8,1 Hz	114,88	H-9	116,3
9	6,92 <i>d J</i> = 8,1 Hz	120,77	H-3 e H-5	122,1
1'	3,48 <i>t J</i> = 7,0 Hz	41,19	-	42,4
2'	2,77 <i>t J</i> = 8,0 Hz	34,41	-	35,7
3'	-	129,92	-	131,0
4'	7,05 <i>d J</i> = 7,95 Hz	129,37	H-5' e H-7'	130,7
5'	6,74 <i>d J</i> = 7,95 Hz	114,88	-	116,4
6'	-	155,49	-	156,7
7'	6,74 <i>d J</i> = 7,95 Hz	114, 88	-	116,4
8'	7,05 <i>d J</i> = 7,95 Hz	129,37	H-5' e H-7'	130,7
N-H	8,00 s	-	-	

Tabela 6. Dados dos espectros de RMN ¹H e ¹³C da substância **242** (DMSO – d_6 500 e 125 MHz) comparados com dados da literatura (TAWEEL et al., 2012)

*TAWEEL et al., 2012, Solvente: CDCl₃ (500 MHz)

Figura 77. Espectro de RMN ¹H (500 MHz, DMSO – d_6) da substância 242.

Figura 78. Expansão do espectro de RMN ¹H (500 MHz, DMSO – d₆) da substância **242**, entre δ 2,6 a 3,5 ppm .

Figura 79. Expansão do espectro de RMN ¹H (500 MHz, DMSO – d₆) da substância **242**, entre δ 6,2 a 7,6 ppm.

Figura 80. Espectro de RMN DEPTQ (125 MHz, DMSO – d₆) da substância 242.

Figura 81. Expansão do espectro de RMN DEPTQ (125 MHz, DMSO – d₆) da substância **242**, entre δ 32 – 168 ppm.

Figura 82. Espectro de RMN HSQC (500/125 MHz, DMSO – d_6) da substância 242.

Figura 83. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO - d₆) da substância 242, δ_H 2,2 - 3,7 δ_C 20,0 - 66,0 ppm.

Figura 84. Expansão do espectro de RMN HSQC (500/125 MHz, DMSO - d₆) da substância 242, entre δ_H 6,0 - 7,5 δ_C 100,0 - 150,0 ppm.

Figura 85. Espectro de RMN HMBC (500/125 MHz, DMSO – d₆) da substância 242.

Figura 86. Expansão do experimento de RMN HMBC (500/125 MHz, DMSO – d₆) da substância **242**, entre $\delta_H 2,5 - 3,5$ ppm $\delta_C 16 - 176$.

Figura 87. Expansão do experimento de RMN HMBC (500/125 MHz, DMSO – d₆) da substância **242**, entre $\delta_H 5,5 - 8,0$ ppm $\delta_C 22 - 184$ ppm.

Figura 88. Espectro de RMN COSY [$^{1}Hx^{1}H$] (500 MHz, DMSO – d₆) da substância 242.

Figura 89. Expansão do espectro de RMN COSY [${}^{1}Hx{}^{1}H$] (500 MHz, DMSO – d₆) da substância **242**, entre δ 2,5 – 3,7 ppm.

Figura 90. Expansão do espectro de RMN COSY [${}^{1}Hx{}^{1}H$] (500 MHz, DMSO – d₆) da substância **242**, entre δ 6,1 – 8,0 ppm.

5. CONCLUSÃO

➢ O estudo fitoquímico das folhas de Zanthoxylum riedelianum (Rutaceae) resultou no isolamento e identificação do derivado do ácido cinâmico 3,4-dihidroxi-cinamato de metila, do derivado do ácido benzóico, ácido protocatecuico, do ester *N*-benzoilfenilalanilato de *N*-benzoilfenilalanina. Todas essas substâncias acima são relatadas pela primeira vez na espécie, além de um octapeptídeo, que foi nomeado ciclozanthoxylano B, que é pela primeira vez relatado na literatura.

> O estudo fitoquímico das cascas do caule de Zanthoxylum rigidum (Rutaceae) levou ao isolamento e identificação da amida α , β -insaturada *N*-trans-cafeoiltiramina e do triterpeno ácido-3- β -hidroxi-urs-12-en-28-óico. Todas essas substâncias acima são relatadas pela primeira vez na espécie.

6. **REFERENCIAS BIBLIOGRÁFICAS**

AMBROZIN, A.R.P.; VIEIRA, P.C.; FERNANDES, J.B.; SILVA, M.F.G.F.; ALBUQUERQUE, S. "Trypanocidal activity of Meliaceae and Rutaceae plant extracts". Memorias do Instituto Oswaldo Cruz, v. 99, p.1-5, **2004**.

ARRIETA, J.; REYES, B.; CALZADA, F.; RIVERA, R. C.; NAVARRETE, A. "Amoebicidal and giardicidal compounds from the leaves of *Zanthoxylum liebmannianun*". Fitoterapia, v. 72, p. 295-297, **2001**.

AZEVEDO, J. L. "Biodiversidade microbiana e potencial biotecnológico. In Ecologia microbiana". Editora Embrapa, CNPMA, Jaguariuna, p. 445-446, **1998**.

BASTOS, J.K.; Albuquerque, S.; SILVA, M.L.A. "Evaluation of trypanocidal activity of lignans isolated from the leaves of *Zanthoxylum naranjilo*". Planta Medica, v.65, p. 541-544, **1999**.

BANERJI, A.; RAY, R. "Auranamide, a nem phenylalanine derivative isolated from *Piper aurantiacum* Wall". Indian Journal Chemical B, v. 20b, p. 597, **1981**.

BASTOS, J. K.; CARVALHO, J. C. T.; SOUZA, G. H. B. de; PEDRAZZI, A. H. P.; SARTI, S. J. "Anti-inflammatory activity of cubebin, a lignan from the leaves of *Zanthoxyllum naranjillo* Griseb". Journal of Ethnopharmacology, v. 75, p. 279-282, **2001**.

BONGUI, J. B.; BLANCKAERT, A.; ELOMRI, A.; SEGUIN, E. "Constituents of *Zanthoxylum heitzii* (Rutaceae)". Biochemical Systematics and Ecology, v. 33, p. 845-847, **2005**.

BRASIL, Ministério da Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Departamento de Assistência Farmacêutica e Insumos Estratégicos. Política Nacional de Plantas Medicinais e Fitoterápicos. Brasília: Ministério da Saúde, p.136, **2006**.

CALIXTO, J.B. "Efficacy, safety, quality control, marketing and regulatory guidelines for

herbal medicines (phytoterapeutic agents)". Brazilian Journal of Medical and Biological Research, v. 33, p. 179-189, **2000**.

CARVALHO, M. G.; CARDOZO, M. A. R.; CATUNDA JUNIOR, F. E. A.; CARVALHO, A. G. "Chemical constituents of *Piptadenia gonoacantha* (Mart.) J.F. Macbr (pau jacaré)". Anais da Academia Brasileira de Ciências, v. 82(3), p.561-567, **2010**.

CATALAN, C. A. N.; HELUANIA, C. S.; KOTOWICZA, C.; GEDRISB, T. E.; HERZ, W. "A linear sesterterpene, two squalene derivatives and two peptide derivatives from *Croton hieronymi*". Phytochemistry, v. 64, p. 625-629, **2003**.

CORRÊA, A. G. "Taxol: da descoberta ao uso terapêutico". Química Nova, v. 18, p. 460-467,**1995**.

CORRÊA, M.P. – "Dicionário das plantas úteis do Brasil e das exóticas cultivadas no Rio de Janeiro". Ministério da Agricultura, v. 2, p. 61, **1931**.

CUCA, L. E., TABORDA, M. E. "Metabolitos Aislados de *Zanthoxylum rhoifolium*". Revista Colombiana de Química, v. 36(1), p. 5-11, **2007**.

CHEN, J. J.; CHEN, P.H.; LIAO, C. H.; HUANG, S. Y.; CHEN, I. S. "New Phenylpropenoids, Bis(1 – phenylethyl)phenols, Bisquinoline alkaloid, and Anti-inflamatory Constituents from *Zanthoxylum integrifoliolum*". Journal of Natural Products, v. 70, p. 1444-1448, **2007**.

CHEN, J. J.; GHUNG, C. Y.; HWANG, T. L.; CHEN, J. F. "Amides and Benzenoids from *Zanthoxylum ailanthoides* with Inhibitory Activity on Superoxide". Journal Natural Products, v. 72, p. 107-111, **2009**.

CHEN, J. J.; LIN, Y. H.; DAY, S. H.; HAWANG, T. L.; CHEN, I. S."New benzenoids and anti-inflammatory constituents from *Zanthoxylum nitidum*". Food Chemistry, v. 125, p. 282-287, **2010**.

CHEN, J. J.; WANG, T. Y.; HWANG, T. L. "Neolignans a Coumarinolignan, Lignan Derivatives, and a Chromene: Anti- inflammatory Contituents from *Zanthoxylum avicennae*". Journal Natural Products, v.71, p. 212-217, **2008**.

CHENG, M. J.; LEE, K. H.; TSAIA, I. L.; CHEN, I. S. "Two new sesquiterpenoids and anti-HIV principles from the root bark of *Zanthoxylum ailanthoides*". Bioorg. Chem., v. 13, p. 5915–5920, **2005**.

CHENG, M. J.; LIN, C. F.; CHANG, H. S.; CHEN, I.S. "Chemical constituents from stem bark of *Zanthoxylum scandens*". Journal of Chilean Chemical Society, v. 53, p. 1631-1634, **2008**.

CHOU, S. T.; CHAM, H. H.; PENG, H. Y.; LIOU, M. J.; WU, T. S. "Isolation of substances with antiproliferative and apoptosis-inducing activities against leukemia cells from the leaves of *Zanthoxylum ailanthoides* Sieb. & Zucc". Phytomedicine, v. 18, p. 344-438, **2011**.

CLARK, A. M.; HUFFORD, C. D.; ROBERTSON, L. W. "Two metabolites from *Aspergillus flavipes*". Journal Natural Products (Lloydia), v. 40, p.146, **1997**

CRAGG, G. M., NEWMAN, D. J., SNADER, K. M.: "Natural Products in drug discovery and development". Journal of Natural Products, v. 60, p. 52–60, **1997**.

FACUNDO, V. A.; SILVEIRA, A. S. P.; BRAZ FILHO, R.; PINTO, A. C.; REZENDE, C. M. "Constituintes químicos de *Zanthoxylum ekmanii* (URB.) alain". Química Nova, v. 28, p. 224-225, **2005**.

FACHIM, E., GUARIM, V.L.M.S., "Conservação da Biodiversidade: Espécie da flora de Mato Grosso". Acta bot, bras., v. 9(2), **1995**.

FARIA, M. S.; SOMNER, G. V.; ROSA, M. M. T. "Rutaceae Juss. da Marambaia, RJ". Revista Brasileira de Biociências, Porto Alegre, v. 5, p. 291-293, **2007**.

FERNANDES, C. C.; VIEIRA, P. C.; SILVA, V. C.; DALL'OGLIO, E. L.; SILVA, L. E.; SOUSA JR., P.T. "6-acetonyl-N-methyl-dihydrodecarine, a New alkaloid 118

from *Zanthoxylum riedelianum*". Journal of the Brazilian Chemical Society, v. 20(2), p. 379-382, **2009**.

FERRACIN, R.J.; SILVA, M.F.G.F.; FERNANDES, J.B.; VIEIRA, P.C. "Flavonoids from the fruits of *Murraya paniculata*". Phytochemistry, v. 47(3), p. 393-396, **1998**.

FERREIRA, M. E.; ARIAS, R. de.; ORTIZ, T. de.; INCHAUSTI, A.; NAKAYAMA, H.; THOUVENEL, C.; HOCQUEMILLER, R.; FOURNET, A. "Leishmanicidal activity of two canthin-6-one alkaloids, two major constituents of *Zanthoxylum chiloperone* var. angustifolium". Journal of Ethnopharmacology, v. 80, p. 199-202, **2002**.

HUANG, H. Y.; ISHIKAWA, T.; PENG, C. F.; TSAI, I. L.; CHEN, I. S. Constituents the root wood of *Zanthoxylum wutaiense* and antitubercular activity. Journal of Natural Products, v. 71, p. 1146-1151, **2008**.

JEONG, C. H.; KWAK, J. H.; KIM, J. H.; CHOI, G. N.; KIM, D.O.; HEO, H. J.; "Neuronal cell protective and antioxidant effects of phenolics obtained from *Zanthoxylum piperitum* leaf using in vitro model system". Food Chemistry, v. 125, p. 417-422, **2011**.

KRIWACKI, R.W., PITNER, T.P. "Current Aspect of Practical Two Dimensional (2D) Nuclear Magnetic Resonance (NMR) Spectroscopy: Applications to Structure Elucidation". Pharmaceutical Research, v. 6(7), p. 531-700, **1989**.

LIU, Z. L.; CHU, S. S.; JIANG, G. H. "Feeding Deterrents from *Zanthoxylum schinifolium* against Two Stored-Product Insects". Journal Agricultural and Food Chemistry, v. 57, p. 10130-10133, **2009**.

MARTIN, M. T.; ROSOANAIVO, L. H.; RAHARISOLOLALAO, A. "Phenanthridine alkaloids from *Zanthoxylum madagascariense*". Fitoterapia, v. 76, p. 590-593, **2005**.

McCORKINDALE, N. J.; BAXTER, R. L.; ROY, T. P.; SHIELDS, H. S.; STEWART, R. M.; HUTCHINSON, S. A. "Synthesis and chemistry of N – benzoyl-o-[N'-benzoyl-L-phenylalanyl]-L-phenylalaninol, the major mycelia metabolite of *Penicillium canadense*". Tetrahedron, v. 34, p. 2791, **1978**.

MOCCELINI, S.K.; SILVA, V. C. da.; NDIAYE, E. A.; JR., P. T. S.; VIEIRA, P. C. "Estudo Fitoquímico das Cascas das Raízes de *Zanthoxylum rigidum* Humb. & Bonpl. Ex Willd (Rutaceae)". Química Nova, v. 32(1), p. 131-133, **2009**.

MOCCELINI, S.K. "Estudo Químico e Farmacológico das Casca das Raízes de *Zanthoxylum rigidum* Humb. & Bonpl. Ex Willd (Rutaceae)". Dissertação, UFMT, **2003**.

NEWMAN, J.D.; CRAGG, G. M.; SNADER, K.H.; "Natural Products as Sources of new drugs over the Period". Journal of Natural Products, v. 66(7), p. 1022-1037, **2003**.

NISSANKA, A. P. K.; KARUNARATNE, V.; BANDARA, B. M. R.; KUMAR, V.; NAKANISHI, T.; NISHI, M.; INADA, A.; TILLEKERATNE. L. M. V.; WIJESUNDARA, D. S. A.; GUNATILAKA, A. A. L. "Antimicrobial alkaloids from *Zanthoxylum Tetraspermum* and *Caudatum*". Phytochemistry, v. 56, p. 857-861, **2001**.

NGOUMFO, R. M.; JOUDA, J. B.; MOUAFO, F. T.; KOMGUEM, J.; MBAZOA, C. D.; SHIAO, T. C.; CHOUDHARY, M. I.; LAATSCH, H.; LEGAULT, J.; PICHETTE, A.; ROY, R. "In vitro cytotoxic activity of isolated acridones alkaloids from *Zanthoxylum leprieurii* Guill. et Perr". Biorganic & Medicinal Chemistry, v. 18, p. 3601-3605, **2010**.

OLIVEIRA, E. L. de.; FREITAS, P. C.; GUEDES, M. L. S.; VELOZO, E. S. "Estudo fitoquímico de *Zanthoxylum stelligerum* (Turcz)". Revista Brasileira de Farmacognosia, v. 12, p. 29-30, **2002**.

OTA, US Congress Office of Technology Assessment, "Technologies to maintain biological diversity". Washington, DC: US Government Printing Office, **1987**.

PASSADOR, E.A.P.; SILVA, M.F.G.F. da.; RODRIGUES-Fo., E.; FERNANDES, J.B.; VIEIRA, P.C.; PIRANI, J.R. "A pyrano chalcone and a flavanone from *Neoraputia magnifica*". Phytochemistry, v. 45(7), p. 1533-1537, **1997**.

PATIÑO, O. J.; CUCA, L. E. "Monophyllidin, a new alkaloid *L*-proline derivative from *Zanthoxylum monophyllum*". Phytochemistry Letters, v. 4, p. 22-25, **2011**.

PINTO, F. C. L.; TORRES, M. C. M.; SILVEIRA, E. R.; PESSOA, O. D. L.; BRAZ-FILHO, R.; GUEDES, M. L. S. "Constituintes Químicos de *Solanum buddleifolium* SENDTN". Química Nova, v. 36, No.08, **2013**.

RASHID, M.A.; ARMSTRONG, J.A.; GRAY, A. I.; WATERMANN, P. G. "Pyranocoumarins as chemotaxonomic markers in *Eriostemon coccineus* and *Philotheca citrina*". Phytochemistry, v. 30(12), p. 4033-4035, **1991**.

RATES, S.M.K. "Plants as Source of Drugs". Toxicon, v. 39, p. 603-613, 2001.

RIBEIRO, T. A. N.; "Estudo fitoquímico de *Zanthoxylum rigidum* Humb. Bonpl. ex Willd (Rutaceae), das raízes de *Luxemburgia nobilis* Eichl (Ochnaceae) e Atividades Biológicas". Tese, PPGQ – UFRRJ, **2012**.

RIBEIRO, J. E. L. S., HOPKINS, M. J. G., VICENTINI, A., SOTHERS, C. A., COSTA, M. A. S., BRITO, J. M., SOUZA, M. A. D., MARTINS, L. H. P., LOHMANN, L. G., ASSUNÇÃO, P. A. C. L., PEREIRA, E. C., SILVA, C. F., MESQUITA, M. R., PROCÓPIO, L. C.: "Flora da Reserva Florestal Ducke: Guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia Central". Manaus: INPA, p.816, **1999**.

ROSS, S. A.; AL-AZEIB, M. A.; KRISHNAVENI, K. S.; FRONCZEK, F. R.; BURANDT, C. L. "Alkamides from the leaves of *Zanthoxylum syncarpum*". Jounal of Natural Products, v. 68, p. 1297-1299, **2005**.

ROSS, S. A.; SULTANA, G. N. N.; BURANDT, C. L.; ELSOHLY, M. A.; MARAIS, J. P. J.; FERREIRA, D. "Syncarpamide, a New Antiplasmodial (+) -Norepinephrine Derivative from *Zanthoxylum syncarpum*". Journal Natural Products, v. 67, p. 88-90, **2004**.

SILVA, C. V.; DETONI, C. B.; VELOZO, E. S.; GUEDES, M. L. S. "Alcalóides e outros metabólitos do caule e frutos de *Zanthoxylum tingoassuiba* A. ST. HIL". Química Nova, v. 31, p. 2052-2055, **2008**.

SILVA, T. M. S.; Nascimento, R. J. B.; Camara, C. A.; Castro, R.; Agra, M. F.; Carvalho, M. G.; Braz-Filho, R. "Distribution of flavonoids and N-trans-caffeoytyramine in *Solanum subg. Leptostemonum*". Biochemical Sysematics and Ecology, v. 32, p. 513-516, **2004**.

SOBRINHO, D. C., HAUPTLI, M. B.; APPOLINARIO, E. V.; KOLLENZ, C. L. M.;CARVALHO M. G.; BRAZ-FILHO, R.; "Triterpenoids isolated from *Parahancornia amapá*". J. Braz. Chem. Soc., v. 2, n.1, p. 15-20, **1991**.

SOUZA FILHO, A.P.S.; SANTOS, R.A.; SANTOS, L.S.; GUILHON, G.M.P.; SANTOS, A.S.; ARRUDA, M.S.P.; MULLER, A.H; ARRUDA, A.C. "Potencial alelopático de *Myrcia guianensis"*. Planta Daninha, Viçosa-MG, v. 24, n. 4, p. 649-656, **2006**.

TALAPATRA, S. K.; PAL, M.K.; MALLIK, A. K.; TALAPATRA, B. "Structure and synthesis of (-) – anabellamide. A new phenylalanine derivate ester amide from *Anaphalis subumbellata*: occurrence of 4' hydroxydehydrokawain". Journal Natural Products, v.46, p.140, **1983**.

TALONTSI, F. M.; MATASYOH, J. C.; NGOUMFO, R. M.; CHEPKORIR, R. "Mosquito larvicidal activity of alkaloids from *Zanthoxylum lemairei* against the malaria vector Anopheles gambiae". Pesticide Biochemistry and Physiology, v. 99, p. 82-85, **2011**.

TANE, P.; WABO, H. K.; CONNOLLY, J. D. "A new benzophenanthridine alkaloid from *Zanthoxylum buesgenii*". Fitoterapia, v. 76, p. 656-660, **2005**.

TANGJITJAROENKUN, J.; CHANTARASRIWONG, O.; CHAVASIRI, W. "Chemical constituents of the stems of *Zanthoxylum limonella* Alston". Phytochemistry Letters, **2012**.

TARUS, P. K.; COOMBES, P. H.; CROUCH, N. R.; MULHOLLAND, D. A. "Benzo[c]phenanthridine alkaloids from stem bark of the Forest Knobwood, *Zanthoxylum davyi* (Rutaceae)". South African Journal of Botany, v. 72, p. 555-558, **2006**.
TAWEEL, A. M. A.; PERVEEN, S. P.; SHAFAE, A. M. E.; FAWZY, G. A.; MALIK, A.; AFZA, N.; IQBAL, L.; LATIF, M. "Bioactive Phenolic Amides from *Celtis africana*". Molecules, v. 17, p. 2675-2682; **2012**.

VEIGA-JUNIOR, V.F.; MELLO. J. C. P. "As monografias sobre plantas medicinais". Revista Brasileira de Farmacognosia, v. 18, p. 464-471, **2008**.

WATERMAN, P. G. "Alkaloids of the Rutaceae: their distribution and systematic significance". Biochem. Syst. Ecol., v. 3(3), p. 149-180, **1975**.

WATERMAN, P. G. e GRUNDON, M. F. In: Chemistry And Chemical Taxonomy Of The Rutales. Academic Press, London, **1983**.

WU, T.S.; LEU, Y.L.; CHAN, Y.Y.; WU, P.L.; KUOH, C.S.; WU, S.J.; WANG, Y. "Tetranortriterpenoid insect antifeedants from *Severinia buxifolia*". Phytochemistry, v. 45(7), p. 1393-1398, **1997**.

XIANG, M.; SU, H.; HU, J.; YAN, Y. "Isolation, identification and determination of methyl caffeate, ethyl caffeate and other phenolic compounds from *Polygonum amplexicaule* var. *sinense*". Journal of Medicinal Plants Research, v. 5(9), p. 1685-1691, **2011**.

YANG, C. H.; CHENG, M. J.; CHIANG, M. Y.; KUO, Y. H.; WANG, C. J.; CHEN, I. S. Dihydrobenzo[c]phenanthridine alkaloids from stem Bark of *Zanthoxylum nitidum*. Journal of Natural Products. v. 71, p. 669-673, **2008**.

YANG, G. Z.; HU, Y.; YANG, B.; CHEN, Y. "Lignans from the bark of *Zanthoxylum planispinum*". Helvetica Chimica Acta, v. 92, p. 1657-1664, **2009**.

ZHOU, X. J.; CHEN, X. L.; LI, X. S.; SU, J.; HE, J. B.; WANG, Y. H.; LI, Y.; CHENG, Y. X. "Two dimeric lignans with α , β -unsaturated ketone motif from *Zanthoxylum podocarpum* and their inhibitory effects on nitric oxide production". Bioorganic & Medicinal Chemistry Letters, v. 21, p. 373-376, **2011**.