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RESUMO EM LÍNGUA VERNÁCULA  

 

A gestão dos recursos florestais com viés ecológico passa pela caracterização fitossociológica, 

e se torna fundamental quando observadas as espécies de plantas da Amazônia. Dentre os 

métodos de inventariação florestal, o sensoriamento remoto aplica-se a pesquisas e 

monitoramento destes recursos com tecnologias baseadas na espectrometria. Tão importante 

quanto, a análise da dinâmica de uso e ocupação do solo de áreas nativas são associadas à gestão 

de recursos naturais e o monitoramento de áreas antropizadas. A aplicabilidade de tecnologias 

desta ciência é verificada neste trabalho, inicialmente na distinção entre espécies florestais por 

meio da espectrorradiometria e posteriormente na validação do modelo hiperespectral de 

estimativa de capacidade de absorção de dióxido de carbono em dados orbitais multiespectrais. 

Na primeira verificação, dados baseados no espectrorradiômetro FieldSpec® 4 Hi-Res relativos 

a quatro espécies de árvores amazônicas (i. e. Bertholletia excelsa, Cedrela fissilis, Euterpe 

Oleracea e Schizolobium parahyba) foram submetidas à análise de Componentes Principais 

(PC) e a Análise Discriminatória, que permearam a distinção das assinaturas espectrais e de 

modelos que representam estas assinaturas (RID, bandas representativas e índices de 

vegetação). O êxito na diferenciação por meio deste método é observado com a variabilidade 

dos dados sendo descritos por PC1 superior a 99% com os três modelos de redução de 

dimensionalidade aplicados. Observando-se os resultados da análise de PC aplicada aos índices 

espectrais, o critério de Singh permitiu verificar que os índices NPCI e CARI2 foram 

majoritariamente responsáveis pela diferenciação das assinaturas espectrais das espécies 

avaliadas, que são índices associados à interação da clorofila com a radiação solar no espectro 

visível. O segundo estudo trata da comparação de resultados do índice CO2Flux entre o sensor 

hiperespectral AisaFENIX e os sensores orbitais multiespectrais OLI/Landsat-8, MSI/Sentinel-

2 e PlanetScope, com este índice aplicado de forma adaptada. Este estudo foi realizado sobre 

uma cena com áreas de floresta nativa, pastagem e solo exposto na cidade de Alta Floresta, na 

Amazônia meridional. Por meio da análise de variância, observou-se que o índice CO2Flux é 

pouco relacionado ao índice PRI, um dos índices base para o CO2Flux. Além disso, os 

resultados sugerem que o MSI/Sentinel-2 é estatisticamente semelhante ao sensor AisaFENIX 

nas áreas antropizadas. Finalmente, a variabilidade temporal destes resultados pode melhorar 

estas conclusões, tendo em vista a relação entre conteúdo de água no dossel com os índices de 

base do CO2Flux. 

 

Palavras-chave: sensoriamento remoto do ambiente, sensoriamento remoto hiperespectral, 

índices de vegetação, espécies florestais amazônicas, dinâmica do carbono. 
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ABSTRACT 

 

The management of forest resources with an ecological bias involves phytosociological 

characterization, and becomes fundamental when observing the plant species of the Amazon. 

Among the methods of forest inventory, remote sensing applies to research and monitoring of 

these resources with technologies based on spectrometry. Just as important, the analysis of the 

dynamics of land use and occupation of native areas are associated with the management of 

natural resources and the monitoring of anthropized areas. The applicability of this science's 

technologies is verified in this work, initially in the distinction between forest species by means 

of spectroradiometry and later in the validation of the hyperspectral model for estimating carbon 

dioxide absorption capacity in multispectral orbital data. In the first verification, FieldSpec® 4 

Hi-Res spectroradiometer-based data for four Amazonian tree species (i. e. Bertholletia excelsa, 

Cedrela fissilis, Euterpe Oleracea and Schizolobium parahyba) were subjected to Principal 

Component (PC) analysis and Discriminant Analysis, which permeated the distinction of 

spectral signatures and models representing these signatures (RID, representative bands and 

vegetation indices). The success in differentiation by this method is observed with the 

variability of the data being described by PC1 greater than 99% with the three dimensionality 

reduction models applied. Observing the PC results applied to the spectral indices, Singh's 

criterion allowed to verify that the NPCI and CARI2 indices were mostly responsible for the 

differentiation of the spectral signatures of the evaluated species, which are indices associated 

with the interaction of chlorophyll with solar radiation in the visible spectrum. The second study 

deals with the comparison of CO2Flux index results between the hyperspectral sensor 

AisaFENIX and the multispectral orbital sensors OLI/Landsat-8, MSI/Sentinel-2 and 

PlanetScope, with this index applied in an adapted way. This study was carried out over a scene 

with native forest, pasture and bare soil areas in the city of Alta Floresta, in southern Amazonia. 

Through analysis of variance, it was observed that the CO2Flux index is poorly related to the 

PRI index, one of the base indices for CO2Flux. Furthermore, the results suggest that 

MSI/Sentinel-2 are statistically similar to the AisaFENIX sensor in the anthropized areas. 

Finally, the temporal variability of these results may improve these conclusions, given the 

relationship between water content in the canopy to the base indices of the CO2Flux. 

 

Keywords: remote sensing of environment, hyperspectral remote sensing,  vegetation indices, 

Amazonian Forest species, carbon dynamics. 
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GENERAL INTRODUCTION OF THESIS  

 

The characterization of the floristic composition is essential in forestry studies, 

although its execution is based on methods with a high technical cost, which in turn are 

based on statistical analysis with outdated data (OUÉDRAOGO et al., 2011) or in chaotic 

methods (PEREIRA; ALVES, 2007), which can give a significant error. Furthermore, it 

is a slow process based on morphological and anatomical observations of leaves, floral 

structures and other trees characteristics (GAUI et al., 2019). 

The characterization of the floristic composition is essential in forestry studies, 

although its execution is based on methods with a high technical cost, which in turn are 

based on statistical analysis with outdated data (OUÉDRAOGO et al., 2011) or in chaotic 

methods (PEREIRA; ALVES, 2007), which can give a significant error. Furthermore, it 

is a slow process based on morphological and anatomical observations of leaves, floral 

structures and other trees characteristics (GAUI et al., 2019). 

Several plant species are distinguished by their characteristics, such as floral 

structures. To identify and locate certain species, the plant must be in bloom to allow the 

eventual botanical research that is being carried out (VENTER; WITKOWSKI, 2019). In 

places with high diversity, this process of floristic characterization is even more complex 

whereas many species remain unknown and some have a very restricted flowering period 

during the year, which affects the process of locating them (ARAUJO, 2006). 

This lack of knowledge regarding diversity is accentuated when native forest 

species in the Amazon biome are assessed (DE ASSIS et al., 2017). Combining this to 

the selective exploration of the biome, more effective and faster techniques are required 

for trees identification and localization, as well as recognizing physical and chemical 

attributes, distinct for each plant variety (HOPE, 2019). 

In a broad perspective, the native forests dynamics assessment in Brazil are based 

on the System of Permanent Parcels (in Portuguese, SisPP) and Forest Dynamics 

Monitoring Network (PP Networks) that bring together the institutions datasets of the 

forestry sector, in terms of dynamics of growth and forestry production, which has as a 

product the implementation of continuous forest inventories (SOUZA, 2013). Vegetation 

assessment methods are generally based on systematized assessments and in rare 

scenarios censuses are performed (DE FREITAS; MAGALHÃES, 2012). 
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Among the forest inventory methods, remote sensing is applicable, which is 

characterized by the acquisition of data on objects without physical contact with them, 

using sensor systems for data generation and software for data processing (LILLESAND; 

KIEFER, 1994). 

Remote sensors are classified according to their spectral resolution, and are 

basically distinguished into two classes, these being multispectral and hyperspectral 

sensors. Those classes imply the type of data obtained, and also defines the applicability 

and relevancy (PONZONI; SHIMABUKURO, 2009). 

Generally, studies of diversity or floristic composition of natural environments 

are based on multispectral data (dozens of electromagnetic bands), which are based on 

orbital sensor systems and are generally freely accessible. Characteristics such as texture, 

viridity and collateral information are the basis for classification and analysis of images 

for the purpose of determining (only) the diversity of plant species (ADAMS et al., 2019; 

MURO et al., 2016; TADDEO; DRONOVA; HARRIS, 2021). This type of database is 

very efficient in applications with large areas, such as defining the boundaries among 

biomes (SILVA JUNIOR et al., 2019a). 

From the perspective of hyperspectral remote sensing (based on hundreds of 

electromagnetic bands), sensors are divided into hyperspectral imagers (data represented 

as images), and non-imagers (data represented as spectral signatures, digits or images) 

(DPI/INPE, 2006), where non-imaging sensors are more promising in plant applications, 

since for this research level the metabolic and biophysical characteristics of the individual 

are analyzed in more detail (JAMES B. CAMPBELL, 2011; WEST et al., 2010). 

Hyperspectral sensor data model the remote sensing of the environment, where 

the various possible targets are represented by the fingerprint (or spectral signature) 

relative to that target. The spectral signature is graphically represented, where the curve 

is based on the relation between electromagnetic wavelength and reflectance (MENESES 

et al., 2012). 

Plants leaves have complex information from organic compounds and can exhibit 

distinct spectral characteristics when studied in the infrared energy range. Thus, modes 

of functional vibrations of various molecular groups produce characteristic spectral 

absorption that can generate a thorough fingerprint (SILVERSTEIN et al., 2015).  

Hyperspectral sensors allow detailed and reliable characterization of the spatial 

variability of a given study area, and also of certain species, as an example, stage of 

development, nutritional status and other countless possibilities. As they operate in 
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hundreds of contiguous and narrow spectral bands, presenting a very high spectral 

resolution (non-imaging sensors like FieldSpec4®) and spatial resolution (when using 

imaging sensors, like the Specim® AisaFENIX sensor) the evaluation, identification, 

classification and eventual localization is only possible through the spectral signature or 

response that each object presents (VANE; GOETZ, 1993). 

In addition, computational treatments to remote data, such as the use of vegetation 

indices and digital classifiers, join this kind of data and information regarding biophysical 

parameters of plants, and consequently allow the distinction and characterization of plant 

targets (FORMAGGIO; SANCHES, 2017). 

The structuring of the spectral signature of plant species is the basis for defining 

an input parameter for many applications and analyzes based on spectroscopy of plants, 

and proves to be a very effective reference in distinguishing between species using 

various classification methods. Moreover, approaches with this bias are characterized by 

not necessarily destructive, and can be developed without the suppression of plants from 

the environment (KHDERY; YONES, 2020; LU et al., 2020; NIDAMANURI, 2020; 

VAIPHASA et al., 2007).  

In addition to distinguishing among species, spectroscopy is applied in plants to 

distinguish among subspecies (GALVÃO; FORMAGGIO; TISOT, 2005; SILVA 

JUNIOR et al., 2018), detection of boron deficiency in eucalyptus (SILVA et al., 2019), 

heavy metal stress (YU; FANG; ZHAO, 2021) and water deficit (BONILLA, 2015; 

CRUSIOL et al., 2017; FIORIO et al., 2018). On chapter 1, were applied three downsizing 

data methods to spectral responses from Amazonian tree species, combined to Principal 

Component (PC) analysis and Cluster Analysis on species distinction. 

Besides, remote sensing is applied on carbon balance characterization of a land 

cover type (SILVA JUNIOR et al., 2019b; SOUZA et al., 2021), and this quantity can be 

estimated by spectral indices. Rahman et al (2001) developed the atmospheric carbon 

dioxide absorption efficiency model for a given area, composed by two spectral indices 

of normalized difference, which are Normalized Difference Vegetation Index (ROUSE 

et al., 1974) and Photochemical Reflectance Index (GAMON; SERRANO; SURFUS, 

1997). 

Due to the dependence on a hyperspectral index, the applicability of this Rahman 

CO2 uptake model is spatially and spectrally limited (GAMON; SERRANO; SURFUS, 

1997; INOUE et al., 2008). Nevertheless, the application of this model adapted to 

multispectral bases has proven to be functional and has been disseminated in research 
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into remote sensing of the environment with good results (CORREIA FILHO et al., 2021; 

DO NASCIMENTO LOPES et al., 2019; FERNANDEZ et al., 2021; SILVA JUNIOR et 

al., 2019b). 

Apparently, this is due to a greater reliance of the estimated CO2 uptake value on 

the NDVI. Seeking to validate and expand the applicability of Rahman's model (2001) in 

the realm of multispectral orbital remote sensing, chapter 2 of this thesis will compare the 

results for this model in the same imaged area with data from the Specim® AisaFENIX 

hyperspectral sensor and the Landsat-8/OLI, Sentinel-2/MSI and PlanetScope 

multispectral orbital sensor systems. The study area is located in the southern Amazon, 

in the municipality of Alta Floresta - MT. It is worth noting that the area imaged has 

forest, exposed soil and pasture, allowing an extended and sturdy comparison of these 

three types of land use and land cover (LULC). 

In this context, hyperspectral remote sensing techniques and multivariate statistics 

were applied to the distinction of plants of some species that make up the flora of an area 

of the Amazon biome, using the FieldSpec4® sensor, and data from the Specim® 

AisaFENIX sensor to validate the applicability of the model for estimating efficiency in 

atmospheric carbon uptake in the Amazon biome. 
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CHAPTER I. 

 IS IT POSSIBLE TO IDENTIFY AMAZONIAN FOREST 

SPECIES USING SPECTROSCOPY APPROACH? 

The present manuscript will follow the standards adopted by the journal Environmental 

Monitoring and Assessment, to which the present work will be submitted. 
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João Lucas Della Silva 1, Carlos Antonio da Silva Junior 2,*, Mendelson Lima 3, Ricardo da Silva 

Ribeiro 4, Luciano Shozo Shiratsuchi 5, Fernando Saragosa Rossi 6, Larissa Pereira Ribeiro Teodoro 7, 

and Paulo Eduardo Teodoro 7 

 

1 Federal University of Mato Grosso (UFMT), Post-Graduate Program in Environmental Sciences (PPGCAM), 
Sinop, Mato Grosso, Brazil.; 

2 State University of Mato Grosso (UNEMAT), Sinop, Mato Grosso, Brazil; 
3 State University of Mato Grosso (UNEMAT), Alta Floresta, Mato Grosso, Brazil; 
4 National Institute of the Atlantic Forest (INMA), Santa Teresa, Espírito Santo, Brazil; 
5 Louisiana State University (LSU), AgCenter, School of Plant, Environmental, and Soil Sciences, Baton Rouge, 

Louisiana, United States; 
6 State University of São Paulo (UNESP), Jaboticabal, São Paulo, Brazil; 
7 Federal University of Mato Grosso do Sul (UFMS), Chapadão do Sul, Mato Grosso do Sul, Brazil. 
 
* Correspondence: carlosjr@unemat.br; ORCID: 0000-0002-7102-2077 

 

ABSTRACT 

Sampling trees in natural environment can be used in studies ranging from floristic 

composition and phytogeography to management and growth modelling, and 

accurate inventories are based on highly labor-intensive methods. Relying on 

hyperspectral approach, this study aimed to differentiate spectral libraries of four 

Amazon tree species. We first prepared the spectroradiometer data on 

representative bands on foliar biochemistry, followed by reflectance inflection 

difference and finally, we applied spectral vegetation models. Next, the discriminant 

analysis was reasoned on multivariate approach, were successfully discriminated 

the spectral curves related to each of evaluated tree species. By visual analysis, some 

regions of the electromagnetic spectrum with higher differentiation in reflectance 

responses can be seen, in portions of the visible spectrum (0.5 - 0.65 μm), near-

infrared (0.913 – 1.25 μm) and short-wave infrared 2 (2.1 – 2.5 μm). There was a 

higher contribution in distinguishing between species based on specific RID 

(Reflectance Inflection Difference) heights, such as seen on specific representative 

bands. Principal component (PC) analysis applied to the vegetation spectral models 

brought satisfactory results, with PC1 highly related to the variability of the 

vegetation indices results (99.37%). Adopting this approach in hyperspectral data 

at the leaf level and well-defined classes results in good responses. We emphasize 

the importance of using combined vegetation indices, with greater contributions by 
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indices developed for quantization or absorption of electromagnetic radiation by 

chlorophyll, which are based in the visible region.  

Keywords: Amazonian trees; leaf-based data; hyperspectral libraries; 

multivariate analysis; vegetation indices; forest management; tree species 

classification. 

 

1. INTRODUCTION 

The accurate floristic classification of an area is based on the sampling or 

census of individuals, which is a highly labor-intensive task (Kersten & Galvão, 2011; 

Thomas et al., 2012). Inventory methods with well-established criteria such as the 

plot system (Ellenberg and Mueller-Dombois 1974) and walking (Filgueiras et al. 

1994) are observed, in addition to subjective criteria such as the choice of 

homogeneous stretches (Rodal et al. 2013), combination of methods or automated 

methods (Feeley and Silman 2009; Ter Steege et al. 2013).  

Sampling trees in a natural environment can be used in studies ranging from 

floristic composition and phytogeography to vegetation management and growth 

modeling, and efficiently depends on knowledge of sampling procedures and 

statistical principles, which are the basis of plant sampling methods (Jeanine Maria 

Felfili et al. 2011). The floristic survey is one of the main types of diagnosis and 

classification of the plant communities in an environment, and from the survey, 

several aspects of the natural vegetation dynamics in forest environments can be 

understood (Watt 1947). Furthermore, Amazon biome lacks investigations 

regarding the identification (Cardoso et al. 2017) and richness of species (Ter Steege 

et al. 2016) and diversity patterns (Ter Steege et al. 2019), even more so when 

considering the biome with the greatest biodiversity in the world (Feeley and 

Silman 2011). Listing and monitoring the flora is essential for political and legal 

efforts to conserve species, especially when they are under threat of extinction 

(Brandes et al. 2020). 

Among the technologies to perform such a survey, spectroscopy is applied in 

studies of vegetation classification, in terms of species (Clark et al. 2005; Mudereri 

et al. 2020; Vaiphasa et al. 2007), varieties of the same species (Nidamanuri 2020; 

Silva et al. 2019; Silva Junior et al. 2018), water content (Brito and Farias 2013; 

Clevers et al. 2008, 2010), plant growth rate (Luís Guilherme Teixeira Crusiol et al. 
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2021) e changes in chemical composition, such as boron deficiency (Dong et al. 

2018) or due to the arrangement of the individual in a planting stand (Brandelero 

et al. 2012). 

In this regard, the floristic survey can be based on in-situ spectroscopy data, 

which for remote sensing science is the reference hyperspectral database for remote 

observations (Crusiol et al., 2019), and thus provide the database for agile and 

accurate observations (Baldeck et al. 2015; Lang et al. 2015; Vaglio Laurin et al. 

2014). 

Spectroradiometer spectroscopy provides a significant volume of data, with 

a high spectral resolution basis (Kishore et al. 2020; Malvern Panalytical 2019). 

Transformation of an enormity of data is commonly accomplished through spectral 

models of vegetation, where data is maximized to observe relative abundance, 

vegetation activity, or any biophysical parameters of interest (M. S. Flores et al. 

2020; J. Jensen 2007), or even highlight vegetation from other targets (Caturegli et 

al. 2014; Peng et al. 2021). From the perspective of differentiating plant species 

using spectral data, plant differentiation studies like this one can take Principal 

Component (PC) analysis (Gomes et al. 2020) and cluster analysis (CA) (Furlanetto 

et al. 2020; Silva Junior et al. 2018) as the statistical basis. 

In view of the above and of the difficulties in field identification, the objective 

of this study was to verify the ability to distinguish tree species in the Southern 

Brazilian Amazon using hyperspectral remote sensing in a native flora area, 

observing four species of economic interest for timber extraction [Schizolobium 

parahyba (Vell.) Blake (Romão and Mansano 2020) and Cedrela fissilis Vell. (Flores, 

2020)] and forest products for other purposes [Berthollethia excelsa (Ribeiro et al. 

2020) and Euterpe oleracea Mart. (Vianna 2020)], as well as establishing a spectral 

library standard for each species. 

2. Materials and Methods 

2.1 Characterization and geographical location 

The study area comprises the municipality of Alta Floresta (Latitude 

09º52'32 "S and Longitude 56º05'10 "W), Mato Grosso, located in the Southern 

Amazon (Figure 1). Alta Floresta has an altitude of approximately 283 meters and a 

tropical climate. Two well-defined seasons occur, a wet and a dry period. According 

to the Köppen-Geiger classification, the region climate is Aw type, with average 
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temperature ranging around 26.4°C, and average annual rainfall reaching 2,281 mm 

(Alvares et al. 2013). 

 

  

Figure 1. Location map of the Brazilian Amazon (IBGE, 2019), followed by the map 

of forest areas in the municipality of Alta Floresta, in the northern region of the state 

of Mato Grosso, Brazil. 

 

2. 2 Native Species Analyzed 

The biodiversity of the Amazonian flora is important for the culture and 

economy of human populations living in the biome, especially for extractive 

activities (Homma 2011a), where bioprospecting activities enhance the global 

market expansion of non-timber forest products (Balzon et al. 2004). Besides the 

products, selective timber extraction is the most primal practice given the demand 

for human consumption (Homma 2011b). From these considerations, the definition 

of the tree species included in this analysis are, in part, species for logging, and in 

another part, non-timber forest products (NTFP) tree species. 

Given the above, the following plant species were considered: 

• Bertholletia excelsa Bonpl. - Lecythidaceae (Brazil nut tree, “Castanheira-do-

Brasil”), species that has great cultural and economic value when it comes to 

both timber value and NTFPs, considering the consumption of the seed and the 

use of wood, when legalized. The species is threatened with extinction and is in 

the Vulnerable (VU) category in the Brazilian territory. (Martinelli and Moraes 

2013). The trees grow up to 60 meters in height and are canopy trees. It has 
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simple oblong leaves, with lengths between 25 and 35 centimeters and widths 

between 8 and 12 centimeters (Ribeiro et al. 2020; Souza et al. 2008); 

• Euterpe oleracea Mart. – Arecaceae (“Açaizeiro”), has as products the fruit and 

the palm heart, which are consumed globally (species with the highest value in 

NTFP production). Cepitose palm with an erect stem reaching heights from 3 to 

20 meters. It has 40 to 80 pairs of Folioles hanging from a compound pinnate 

leaf, with length between 20 and 50 centimeters and width ranging from 2 to 3 

centimeters (Henderson and Galeano 1996); 

• Schizolobium parahyba (Vell.) Blake – Fabaceae (Cuiabano pine), species with 

great value in timber extraction, with a height of up to 40 meters. It has bipinnate 

leaves that are 80 to 100 centimeters long, with 6 to 29 pairs of pinnae and 9 to 

30 pairs of Folioles (Richter et al. 1974);  

• Cedrela fissilis Vell. – Meliaceae (cedar tree, “Cedro-Rosa”), has great economic 

value due to its lumber with great added value and social value. It is an 

endangered species, in the Vulnerable (VU) category (Martinelli and Moraes 

2013). Tree 8-30 meters high. Pinate compound leaves with 50 to 120 

centimeters long and 10 to 17 pairs of Folioles (Flores, 2020). Folioles with 

length between 7 and 14 centimeters and width between 3 and 4 centimeters 

(Grings and Brack 2011). 
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Figure 2. Amazonian trees studied, where: A - Bertholletia excelsa; B – Euterpe 

oleracea; C – Schizolobium parahyba; D – Cedrela fissilis. 

 

The samples collected were healthy leaves from the top of mature trees, 

which were removed with a tree pruner (procedure shown in Figure 2B). The leaves 

at the top of the tree were chosen since these data most closely resemble those 
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generated remotely (orbital or airbone), and seeking data closer to natural 

occurrence, these leaves were removed from random mature individuals in a forest 

in the study area, and immediately submitted to the spectroradiometer.  

 

2.3 Hyperspectral Curve Acquisition 

Radiometric readings were performed using the FieldSpec® 4 Hi-Res, which 

is a high spectral resolution spectroradiometer designed for faster and more 

accurate spectral data measurements for a wide range of remote sensing 

applications. The spectroradiometer's 3 nm spectral resolution VIS and NIR (Visible 

and Near Infrared) and 8 nm SWIR (Shortwave Infrared) provide superior spectral 

performance across the full range solar irradiance spectrum (0.35-2.5 

μm). Enhanced spectral resolution in the SWIR range (1.0-2.5 μm) is particularly 

useful for detecting and identifying compounds with narrow spectral characteristics 

at longer wavelengths (Malvern Panalytical 2019). 

Furthermore, the 8 nm resolution meets or exceeds the spectral resolution of 

most hyperspectral sensors, making the FieldSpec® 4 Hi-Res spectroradiometer an 

excellent choice for sensor validation and calibration, as well as ground data 

exchange and spectral library construction. 

For the spectral reading of each leaf, the ASD Plant Probe was used. This 

equipment is used for leaf measurements, and its main characteristic is the non-

destructive method, with no interference from the luminosity of the reading site; it 

is 25.4 cm long, weighs 0.7 kg, and has a 6.5 W lamp. ASD Plant Probe is designed 

for contact spectral measurements of solid raw materials. With this accessory, it is 

possible to minimize errors associated with stray light by also allowing the analysis 

of samples through transparent plastic bags. 

Spectral readings were repeated three times (one on each leaf) for different 

individuals for each tree species, namely Brazil nut tree (Berthollethia excelsa 

Bonpl.), “Açaí” tree (Euterpe oleracea Mart.), Cuiabano pine (Schizolobium 

parahyba (Vell.) Blake), and cedar tree (Cedrela fissilis Vell.). In this study, spectral 

data were based on the adaxial face of leaf samples, more closely related to 

airborne or orbital imagery data. These data were obtained based on the average 

of the three readings for each sample (Chicati 2011; Fiorio et al. 2010; Nanni and 
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Dematte 2000). The samples for this procedure were characterized as mature 

leaves (Chavana-Bryant et al. 2019). 

The equipment used depends on a reference standard, where barium sulfate 

was used (BaSO4), a white plate of the device itself which reflects 100% of the light 

beam. The spectral data from this plate is stored by the system for later 

determination of the reflectance factor of the samples, where they are weighted by 

the readings obtained from each sample. 

 

2.4 Spectral data preparing for analyses 

Here, were applied three dimensionality reduction methods, in order to 

generating the datasheet used in the statistical analyses. The first method is 

selecting the bands and inflection heights (Nanni et al. 2004; Silva Junior et al. 

2020) and its reflectances level. The selected band is based on the average 

wavelength range at different points in the analyzed spectrum (0.35 to 2.5 μm). 

This selection is based on visual observations of the average spectral curves and 

the known vegetation spectral curves described in Figure 3. 



32 

 

 

Figure 3 – Vegetative characteristics and their centered spectral responses. 

*Xanthophyll and Chlorophyll Synthesis. 

 

Next, the spectral curve intervals between inflections, bulged and concave 

portions, present in the mean curves of all native Amazonian species evaluated, 

were classified. In addition to the average interval, the wavelength characterized by 

a strong inflection was used. 

The spectral behavior related to its reflectance shows the averages of 

representative wavelength intervals and sharp inflection points representing 

elements known as phototropism, a and b carotene, and water (Marshak and 

Knyazikhin 2017). The division into 28 VIS and infrared bands of the 

electromagnetic spectrum is detailed in Table 1 (Silva Junior et al. 2018).  
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Table 1. Wavelength ranges that will be used to establish 28 spectral bands for 

statistical treatment. 

Bands (n°) Spectral Range (μm) Average Wavelength (μm) 

1 0.35-0.369 0.359 

2 0.370 0.37 

3 0.371-0.419 0.395 

4 0.420 0.42 

5 0.421-0.424 0.422 

6 0.425 0.425 

7 0.426-0.444 0.435 

8 0.445-0.475 0.46 

9 0.480 0.48 

10 0.481-0.500 0.49 

11 0.501-0.530 0.515 

12 0.531-0.539 0.535 

13 0.540 0.54 

14 0.541-0.649 0.595 

15 0.650 0.65 

16 0.661-0.670 0.665 

17 0.675 0.675 

18 0.676-0.684 0.680 

19 0.685-0.689 0.687 

20 0.690-0.700 0.695 

21 0.701-0.709 0.705 

22 0.710 0.71 

23 0.711-0.730 0.72 

24 0.960 0.96 

25 1.100 1.1 

26 1.400 1.4 

27 1.930 1.93 
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28 2.200 2.2 

 

The second way of selecting spectral curves obtained by spectroradiometric 

analyses is using the difference between the reflectance factor value centered on 

the smallest inflection point (absorption bands) and the reflectance factor value on 

the next largest point, called the crest. These ranges are called reflectance inflection 

difference (RID) and were determined as shown in Figure 4. A visual analysis of 

the spectral curves for a given species indicates the presence of 22 heights (or 

spectral bands) throughout the analyzed spectrum, described in Table 2 (Silva 

Junior et al. 2020). It is important to note that the 22 heights of this selection method 

are not related to the aforesaid 28 representative wavelengths. 

  

Figure 4. Methodology for determining interband heights (RID) for spectral curves. 
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Table 2. Reflectance difference inflections (RID) selected for the statistical analysis. 

Height (h) Spectral Range (μm) 

1 0.350-0.371 

2 0.389-0.405 

3 0.479-0.530 

4 0.531-0.537 

5 0.540-0.573 

6 0.586-0.611 

7 0.621-0.652 

8 0.668-0.756 

9 0.768-0.892 

10 0.913-0.947 

11 0.948-0.983 

12 0.984-0.992 

13 0.993-1.034 

14 1.102-1.172 

15 1.186-1.257 

16 1.270-1.427 

17 1.428-1.634 

18 1.652-1.792 

19 1.811-1.910 

20 1.948-2.115 

21 2.124-2.208 

22 2.215-2.450 

 

The data spreadsheet was prepared based on the 28 bands obtained 

by averaging the optical spectrum intervals, as well as the specific 

absorptions, with 22 reflectance factor height (RID) values for each native 

Amazonian Forest species variety.  
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2.5 Calculation of Spectral Vegetation Models 

We used the values relative to the average spectral curves obtained through 

the spectroradiometer, which in turn are based on the average values of the blue, 

green, red, and near-infrared bands. Among the vegetation indices applied, the EVI 

(Enhanced Vegetation Index) (Huete et al. 1997) can be obtained by Equation 1. 

 𝐸𝑉𝐼 = 𝑔.
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+(𝑐1.𝜌𝑅𝐸𝐷)−(𝑐2.𝜌𝐵𝐿𝑈𝐸)+𝑙
    (1) 

Wherein: 

𝜌𝑁𝐼𝑅 , 𝜌𝑅𝐸𝐷 and 𝜌𝐵𝐿𝑈𝐸: reflectance in the near-infrared, red and blue spectral 

ranges, respectively; 

𝑔: gain factor (2.5);  

𝑐1 and 𝑐2: are the correction coefficients for atmospheric effects for red (6) and 

blue (7.5), respectively; 

𝑙: correction factor for soil interference. 

 

The EVI is an index that was developed to mitigate the effects of the soil 

(adjusted by Soil Adjusted Vegetation Index - SAVI) and the atmosphere (adjusted 

by ARVI) in vegetation mapping. In addition to EVI, NDVI (Equation 2) was used in 

this analysis. 

 𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷
 (2) 

Wherein:  

𝜌𝑁𝐼𝑅 and 𝜌𝑅𝐸𝐷: reflectances in the near-infrared and red spectral range, 

respectively. 

 

The NDVI is the most widespread and widely used spectral model in remote 

sensing (Cohen and Justice 1999). Among the vegetation indices, the GNDVI (Green 

Normalized Difference Vegetation Index) is given by Equation 3 (Gitelson et al. 

1996).  

𝐺𝑁𝐷𝑉𝐼 = 
(𝜌𝑁𝐼𝑅−𝜌𝐺𝑅𝐸)

(𝜌𝑁𝐼𝑅+𝜌𝐺𝑅𝐸)
                                       (3) 

                  
Wherein:  
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𝜌𝑁𝐼𝑅: near-infrared band;  

𝜌𝐺𝑟𝑒𝑒𝑛: green band.  

 
Although the EVI and NDVI indices have been widely used, they present 

some limitations, such as interference from soil color and moisture effects. Thus, 

an index that could improve NDVI considering the canopy substrate. To this end, 

SAVI ( Soil Adjusted Vegetation Index) was developed from a constant "L" as an 

adjustment factor for this canopy substrate. In this way, the SAVI is obtained using 

Equation 4. 

𝑆𝐴𝑉𝐼 = (1 + 𝐿)
(𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷)

(𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷+𝐿)
                                  (4)  

Wherein:  
L= 0.5; 

𝜌𝑁𝐼𝑅: near-infrared band;  
𝜌𝑅𝐸𝐷: red band. 

 
The constant "L" shows values from 0 to 1, varying according to the biomass 

itself. The optimal values for "L" are: L = 1 (for low vegetation densities); L = 0.5 

(for medium vegetation densities); and L = 0.25 (for high vegetation densities) 

(Huete et al. 1997). Overall, the factor L = 0.5 is commonly used, since it 

encompasses a higher variation of vegetation conditions. Still, the SAVI is limited 

due to different biomes and agricultural situations since the constant values are 

generalized, not considering the specificities of the environments analyzed, but only 

the vegetation density (Ponzoni and Shimabukuro 2009). 

The Transformed Vegetation Index (Broge and Leblanc 2001), defined by the 

acronym TVI, describes the radiative energy absorbed by pigments as a function of 

the relative difference between reflectance in the red and near-infrared together 

with the magnitude of reflectance in the green region, where light absorption by 

chlorophyll a and b is relatively insignificant (J. R. Jensen 2009). Equation 5 was 

used to obtain the TVI. 

𝑇𝑉𝐼: √𝑁𝐷𝑉𝐼 + 0.5                                                      (5) 

Wherein:  

NDVI: Normalized Difference Vegetation Index.  
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The Optimized Soil Adjusted Vegetation Index (OSAVI) is a variation of 

SAVI, suitable for monitoring agricultural crops (Rondeaux et al. 1996). From 

evaluating several coefficients in different indices, the authors mentioned above 

obtained the best fit with a value of 0.16. The advantage of OSAVI over the other 

indices dependent on the soil line is that without knowing the soil line, it can be 

determined, i.e., it does not require a priori knowledge of the soil type (Steven 

1998). The OSAVI is given by Equation 6. 

𝑂𝑆𝐴𝑉𝐼 = (1 + 𝑌)
(𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷)

(𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷+𝑌)
                                        (6) 

 

Wherein:  
Y= 0.16 
𝜌𝑁𝐼𝑅: near infrared band; 
𝜌𝑅𝐸𝐷: red band.  

Characterizing the leaf nitrogen (N) content based on the chlorophyll A 

content, the concentration of this substance sensitizes the reflectance at certain 

wavelengths, where higher concentrations sensitize the reflectance at 548 

nanometers and lower concentrations sensitize the reflectance at 672 nanometers 

(Jacquemoud and Baret 1990). This proposes a correlation between chlorophyll-a 

and nitrogen content (Filella et al. 1995), which can be the basis for choosing a 

vegetation index to distinguish between species. 

NPCI –  Normalized Pigment Chlorophyll Index (Peñuelas et al. 1994) is based 

on these nitrogen-sensitive wavelengths, which proposes a quantification of the 

effects of different concentrations of this substance in the plant canopy (Equation 

7). 

𝑁𝑃𝐶𝐼 =
𝜌680𝑛𝑚−𝜌430𝑛𝑚

𝜌680𝑛𝑚+𝜌430𝑛𝑚
                                                   (7) 

Wherein: 

𝜌680𝑛𝑚: reflectance at 680 nanometers;  
𝜌430𝑛𝑚: reflectance at 430 nanometers.  

In terms of evaluating the absorbed photosynthetically active fraction, the 

CARI2 index was designed to minimize the effect of non-photosynthesizing targets 

on the vegetation (Kim 1994). It is characterized as an index based on high spectral 

resolution, which is satisfied in applications with the FieldSpec® 4. 

𝐶𝐴𝑅𝐼2 = (
𝑎×𝜌670𝑛𝑚+𝜌670𝑛𝑚+𝑏

(𝑎2+1)0,5 ) × (
𝜌700𝑛𝑚

𝜌670𝑛𝑚
)                                (8) 
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Wherein: 

 𝑎 = 𝜌700𝑛𝑚 − 𝜌550𝑛𝑚 

 𝑏 = 𝜌550𝑛𝑚 − 𝑎 × 𝜌550𝑛𝑚 

𝜌700𝑛𝑚: reflectance at 700 nanometers;  

𝜌670𝑛𝑚: reflectance at 670 nanometers;  

𝜌550𝑛𝑚: reflectance at 550 nanometers; 

 
In the identification and classification of different plant species that occur in 

a natural environment, the behavior of electromagnetic radiation in the red edge is 

responsible for a great contribution (Chatziantoniou et al. 2017; Liu et al. 2021). Red 

edge position and size are used as indicators of chlorophyll content, biomass, and 

water status of plant targets (Filella and Peñuelas 1994). Among the vegetation 

indices, the LCI (Leaf Chlorophyll Index) is based on the red, mid-infrared, and red 

edge bands, representing the shape of the spectral curve near this range (Datt 1999). 

From a plant canopy-based perspective, the LCI is a chlorophyll-sensitive 

vegetation index over a significant range of chlorophyll content and delivers an 

effective response verified in Eucalyptus species (Datt 1999) for being little affected 

by the interference caused by the scattering of radiation by the leaves, as well as by 

variations in internal structure (Pu et al. 2008). Such characteristics make it a 

potential index for forest vegetation approaches. 

𝐿𝐶𝐼 =
𝜌850𝑛𝑚−𝜌710𝑛𝑚

𝜌850𝑛𝑚+𝜌680𝑛𝑚
                                                       (9) 

Wherein: 

𝜌850𝑛𝑚: reflectance at 850 nanometers; 
𝜌710𝑛𝑚: reflectance at 710 nanometers;  
𝜌680𝑛𝑚: reflectance at 680 nanometers. 
 
In an analogous way, the LWCI (Leaf Water Content Index) is correlated with 

leaf water content, and is based on one band in the near-infrared spectrum and 

another in the mid infrared region. The use of these bands is due to the spectral 

behavior of plant targets with the presence of water, where the LWCI represents the 

relative leaf water content – RWC (Raymond Hunt et al. 1987). 

𝐿𝑊𝐶𝐼 =
log(1−(𝜌𝑁𝐼𝑅−𝜌𝑀𝐼𝐷𝐼𝑅))

−log(1−𝜌𝑁𝐼𝑅−𝜌𝑀𝐼𝐷𝐼𝑅)
                                                       (10) 
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Wherein: 

𝜌𝑁𝐼𝑅: reflectance in the near-infrared; 
𝜌𝑀𝐼𝐷𝐼𝑅: reflectance in the mid-infrared. 

Among the vegetation indices, indices based only on bands of the VIS 

electromagnetic spectrum provide a satisfactory response when accompanied by a 

classifier (Masemola et al. 2020). Green Leaf Index (GLI) is based on three VIS bands, 

and because it is based on the blue band, it has the atmospheric scattering effects 

attenuated, which proposes a different response than the other indices adopted in 

this study. 

𝐺𝐿𝐼 =
2×𝜌𝐺𝑅𝐸𝐸𝑁−𝜌𝑅𝐸𝐷−𝜌𝐵𝐿𝑈𝐸

2×𝜌𝐺𝑅𝐸𝐸𝑁+𝜌𝑅𝐸𝐷+𝜌𝐵𝐿𝑈𝐸
                                     (11) 

Wherein: 

𝜌𝐺𝑅𝐸𝐸𝑁: reflectance in the green; 
𝜌𝑅𝐸𝐷: reflectance in the red; 
𝜌𝐵𝐿𝑈𝐸: reflectance in the blue. 

 

2.6 Statistical Analyses 

2.6.1 Principal Component Analysis 

The datasets were submitted to Principal Component (PC) analysis by R 

software (R Development Core Team 2005), using ‘ggfortify’ (Tang et al. 2016) 

library. Hither, four data sets were established for PC analysis, with the first 

consisting of the representative bands and ranges (Table 1), the second being the 

RID values (Table 2), the third group consisting of the vegetation indices used, and 

a fourth group consisting of the means of the blue, green, red, and near-infrared 

wavelengths from the spectral curves of the samples. This fourth group was 

subjected to PC analysis with the other groups individually to verify the ability of 

the representative bands, RID values, and vegetation indices to discriminate native 

Amazonian Forest species and the relationship of each variable in each set to the 

species varieties. 

2.6.2 Cluster analysis 

As with PC analysis, for cluster analysis (CA), each data set must be analyzed 

in isolation. Ward's hierarchical agglomerative algorithm (Ward, 1963), whose 

measure of dissimilarity is the mean Euclidean distance, is given by Equation 12  

(Everitt and Dunn 1991): 
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𝑑𝑒 = [∑ (𝑃𝑝𝑗 − 𝑃𝑘𝑗)²𝑛
𝑗=1 ]

1

2                              (12) 

Wherein: 

de is the Euclidean distance, and;  

Pp,j and Pk,j are the j-variables of individuals p and k, respectively. 

 

Ward's algorithm forms groups by minimizing dissimilarity or total sums of 

squares within groups, also known as the sum of squares of deviations (SQD). In 

each step of the procedure, groups are formed such that the resulting solution has 

the smallest SQD within groups. In these steps, joins of all possible pairs of groups 

are considered, and the two resulting in the smallest increase in SQD are grouped 

until all groups form a single one, gathering all individuals (Everitt and Dunn 1991; 

Torres et al. 2015). 

Furthermore, dM (Mahalanobis distance) makes it possible to quantify the 

relative contribution of the variables to the difference between Amazonian species 

in each dataset using the criteria proposed by Singh (1981), based on j
S  statistics. 

In this case, we consider a Mahalanobis distance defined below (Equation 13). 

𝑑𝑀 = 𝛿′𝑖𝑖′𝜓
−1𝛿𝑖𝑖′ ∑ ∑ 𝜔𝑗𝑗′𝑑𝑗𝑑𝑗′

𝑝
𝑗′=1

𝑝
𝑗=1                              (15) 

Wherein: 

jj '
ω  is the element of the jth row and j'-th inverse column of the matrix of 

residual variances and covariances. 

The percentage values of j
S  are the measure of the relative importance of 

variable j (from each data set) for the difference between the species, expressed by 

Equation 14. 
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3. RESULTS 

From FieldSpec® 4 data, the spectral curves of the evaluated plant species 

were created (Figure 5), and the vegetation indices were calculated for 

discriminatory analysis. 

  

Figure 5. Spectral signature of the evaluated species, with the horizontal axis being 

the wavelength (μm) and the vertical axis being the percent reflectance. 

By visual analysis, some regions of the electromagnetic spectrum with higher 

differentiation in reflectance responses can be seen, in portions of the visible 

spectrum (0.5 - 0.65 μm), near-infrared (0.913 – 1.25 μm) and SWIR 2 (2.1 – 2.5 μm), 

as highlighted in Figure 6. From the spectral library, the reflectance values for the 

28 spectral intervals and inflection points representative of the biochemical 

composition at the leaf level were measured (Table 3). 
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Figure 6. Spectral signature ranges with the highest difference between the 

reflectance values of the evaluated species, where A - visible spectrum; B - near-

infrared, and C - SWIR 2. 

Table 3. Reflectance factor in the spectral bands and inflection points representative 

of the leaf structure. 

Band B. excelsa E. oleracea S. parahyba C. fissilis 

1 0.0387883 0.0381901 0.0995234 0.0294417 

2 0.0322674 0.0312767 0.0991512 0.0287680 

3 0.0295023 0.0297905 0.0949492 0.0277122 

4 0.0280561 0.0296431 0.0919339 0.0277269 

5 0.0281852 0.0295000 0.0918993 0.0286455 

6 0.0299413 0.0305933 0.0921771 0.0285859 

7 0.0292421 0.0299946 0.0906873 0.0281718 

8 0.0292437 0.0306887 0.0888572 0.0290923 

9 0.0292980 0.0303981 0.0874105 0.0292866 

10 0.0296961 0.0305054 0.0871209 0.0295904 

11 0.0468631 0.0440066 0.1037252 0.0468178 
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12 0.0841212 0.0689784 0.1461410 0.0910710 

13 0.0872634 0.0702222 0.1500176 0.0944742 

14 0.0500768 0.0427238 0.1073540 0.0512034 

15 0.0322656 0.0309660 0.0845492 0.0316428 

16 0.0312670 0.0307002 0.0833196 0.0311421 

17 0.0309623 0.0339717 0.0826009 0.0333111 

18 0.0325463 0.0370830 0.0844210 0.0359054 

19 0.0360263 0.0415363 0.0881747 0.0400615 

20 0.0522007 0.0531267 0.1074606 0.0596333 

21 0.1355049 0.1153380 0.2072679 0.1510268 

22 0.1951492 0.1599440 0.2763079 0.2089977 

23 0.3117758 0.2528179 0.4071327 0.3169921 

24 0.4960168 0.4292705 0.6043329 0.4661718 

25 0.4981131 0.4299003 0.6099862 0.4749999 

26 0.2543505 0.2339375 0.3219815 0.2445984 

27 0.0402941 0.0451426 0.0693014 0.0440182 

28 0.1850987 0.1986600 0.2545797 0.2110869 

 
The principal component (PC) analysis was performed three times with the 

four data sets, relative to the representative bands of leaf biochemistry (Table 1), 

RID intervals (Table 2), calculated vegetation indices, and the analyzed species to 

verify the association between the first three sets and the evaluated species, 

individually. It is evident that PC1 explained more than 99% of the variation in the 

three predictor data sets, as shown below. 

The PC analysis application between the bands representing the leaf 

structure and the species showed the spectral intervals with the greatest 

contribution in distinguishing species, where the points closest to the species 

(represented by the red vectors) showed the highest contribution. Therefore, the 

bands contained in cluster 3 (22, 23, 26, and 28) were the most significant, as they 

were associated with the response of all four species (Figure 7A). The reflectance 

data at the representative spectral bands and points are presented in the heatmap 

(Figure 7B). 
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Figure 7. Graphical representation of the PC analysis with the data sets for the 

samples and the bands representing the leaf structure (A) and heatmap with the 

data sets for the samples and the bands representing the leaf structure (B), where: 

Berthollethia excelsa (Sp1), Euterpe oleracea (Sp2), Schizolobium parahyba (Sp3) 

and Cedrela fissilis (Sp4). 

The differences between the maximum and minimum RID values at each 

height (ΔRID) were calculated, and it was noted that the response at heights 8 and 

16 showed the highest difference (Table 4). In another perspective based on the RID 
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values, we observed that the values for E. oleracea were the lowest for 19 of the 22 

intervals, while the values for S. parahyba were the highest for 17 intervals. 

 

Table 4. RID values for each species and the difference between the highest and 

lowest value for each height. 

Heigth B. excelsa E. oleracea S. parahyba C. fissilis ΔRID 

1 0.022708 0.01317 0.016163 0.0156 0.009538123 

2 0.002101 0.004257 0.001766 0.001317 0.002940598 

3 0.049273 0.035232 0.051666 0.054918 0.019685268 

4 0.005615 0.003004 0.007194 0.006779 0.004190191 

5 0.021309 0.016498 0.023401 0.024724 0.008226542 

6 0.0101 0.006596 0.012357 0.011025 0.005760696 

7 0.007035 0.005189 0.00925 0.00847 0.004060973 

8 0.464203 0.403087 0.515404 0.440853 0.112316481 

9 0.004134 0.003457 0.009846 2.85E-05 0.009817678 

10 0.003949 0.003488 0.004229 0.003907 0.000741359 

11 0.004966 0.003569 0.005126 0.004381 0.001557679 

12 0.00116 0.000811 0.001255 0.000953 0.000443393 

13 0.003025 0.001448 0.004283 0.00722 0.005771891 

14 0.027352 0.019866 0.033657 0.025856 0.013791078 

15 0.008652 0.005064 0.010083 0.006826 0.005018609 

16 0.295556 0.239821 0.346429 0.276532 0.10660753 

17 0.183155 0.160739 0.2169 0.182746 0.05616141 

18 0.05715 0.045781 0.064197 0.05207 0.018415794 

19 0.263666 0.241482 0.319873 0.266655 0.078390097 

20 0.112918 0.121815 0.146602 0.131795 0.033683426 

21 0.023567 0.021595 0.028576 0.025345 0.006981319 

22 0.128508 0.127706 0.162094 0.137679 0.034387526 

ΔRID: difference between the highest and lowest RID value for each height 

There was a higher contribution in distinguishing between species based on 

RID heights 8, 16, and 19 (Figure 8A), contained in the first cluster. The direction of 
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the vectors associated with the species motivates the high variability in the direction 

of the PC1 axis. Based on these data sets, the heatmap (Figure 8B) was also prepared, 

scaled according to the values present in Table 4, where the highest values are 

represented by pink color and the lowest by blue color. 

 

Figure 8. Graphical representation of PC analysis with the data sets for the 

samples and RID intervals (A) and heatmap with the data sets for the samples and 

RID intervals (B), where: Bertholletia excelsa (Sp1), Euterpe oleracea (Sp2), 

Schizolobium parahyba (Sp3), and Cedrela fissilis (Sp4). 

 

For the PC analysis applied to the vegetation indices, it was possible to 

observe that the NPCI, TVI, and CARI2 indices contained in cluster 1 were those 
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closest to the species vectors (Figure 9A). Among them, Singh's criterion (1981) 

reveals that the CARI2 and NPCI indices accounted for 70.45% and 16.73% of the 

differentiation of the evaluated species, respectively (Table 5). From a graphical 

representation perspective, the heatmap (Figure 9B) was elaborated to visualize the 

vegetation indices regarding to the analyzed species. In this figure, higher values are 

represented by pink and lower values are represented by blue color. 

Figure 9. Graphical representation of PC analysis with sample and vegetation index 

datasets (A) and heatmap with sample and vegetation index datasets (B), where: 

Bertholletia excelsa (Sp1), Euterpe oleracea (Sp2), Schizolobium parahyba (Sp3), and 

Cedrela fissilis (Sp4). 

 

Euterpe oleracea had the highest values for LCI, SAVI, GLI and OSAVI. The 

species Bertholletia excelsa and Cedrela fissilis showed similar values for EVI, GNDVI, 

LWCI, and NPCI. On the other hand, the samples of Schizolobium parahyba reached 

the highest values for the TVI, NDVI, CARI2, and GNDVI indices. By Singh's criterion, 

the relative contributions (Sj) of each vegetation index evaluated for distinction can 

be verified, as well as their percentage values (Table 5). 
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Table 5. Vegetative characteristics and their centered spectral responses. 

Vegetation Index Sj Percentage Value (%) 

EVI 0.000593 0.17 

NDVI 0.000393 0.11 

GNDVI 0.006261 1.76 

SAVI 0.007144 2.01 

TVI 0.000207 0.06 

OSAVI 0.002625 0.74 

NPCI 0.059369 16.73 

CARI2 0.250080 70.45 

LCI 0.001586 0.45 

LWCI 0.022424 6.32 

GLI 0.004288 1.21 

 

4. DISCUSSION 

Based on the spectral curves obtained, the reflectance characteristics 

between species occurring in a native environment can be compared, where trees 

with a sunlit canopy show a higher difference between NIR and SWIR reflectance 

factors than species with a shade canopy), followed by species with medium height 

(Wu et al. 2017). This response is evident when comparing the curves of C. fissilis 

and B. excelsa, with shade (Carvalho 2005) and sunlit canopy (Corrêa 1926; Salomão 

2009), respectively, as seen in Figure 6B and 6C. It is noteworthy that leaf 

morphology has no significant impact on the leaf-based spectrum, where the 

spectral behavior suggests a substantial similarity between E. oleracea and C. fissilis, 

in which the first is a palm tree with long and narrow folioles, and the second is a 

woody tree with short and wide folioles (Martins da Silva et al. 2014). 

Looking at biochemical characteristics associated with the reflectance factor 

at specific wavelengths, the chlorophyll absorption characteristic at 550 

nanometers was not significant in differentiating, as the responses for the four 

species were quite close. Conversely, the behavior in the red-edge region 
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(represented by bands 22 and 23 in the representative bands approach) allowed for 

differentiation with greater importance, which is supported by the PC analysis 

results. The red-edge region in the electromagnetic spectrum relates to light 

scattering in the mesophyll and interacts with the internal leaf structure (Sánchez-

Azofeifa et al. 2009). Taking the distinction between species as an objective, the 

bands described in cluster 3 in Figure 7A are arranged in positions of high 

reflectance variation, indicating that higher reflectance variability is essential for 

good results in species identification. (Miyoshi et al. 2020). The importance of bands 

22 and 23 in this model relates to the red-edge region of the spectrum, which varies 

with nitrogen and chlorophyll content, making it important in differentiating 

between plants  (Flores et al., 2020; Liu et al., 2021; Peñuelas et al., 1994). 

Furthermore, the variability described by PC1 being very close to the total data 

variability (99.72%) suggests that the differentiation between species by 

representative bands approach is effective. 

Following the model for estimating anthocyanin uptake (Sims and Gamon 

2002), it was found that the highest absorbance for this component occurred in the 

samples of S. parahyba and was similar for the other species evaluated. This 

condition is noted by the leaf coloration of the species evaluated since this model is 

based on visible wavelengths. Furthermore, the heatmap in Figure 7B reinforces this 

result since S. parahyba presents higher reflectance throughout the measured 

spectrum. 

The RID approach quantified the difference between the maximum and 

minimum inflection intervals (RID) for the 22 heights (Nanni et al. 2004) and 

detailed spectral signature. The RID comparison with the highest difference at 

heights 8 and 16 suggests that these spectral ranges are relevant in differentiating 

plant species, which is evidenced by the PC analysis. Similar to the response of PC 

analysis with data from representative bands, the RID approach proved to be 

efficient in characterizing the spectral curve from the standpoint of data variability, 

with almost its entirety at PC1 (99.87%). From a leaf biochemistry perspective, if we 

compile the results from the RID intervals in the visible region with the spectral 

curve obtained, we note that the chlorophyll content (Lichtenthaler et al. 1998) in 

E. oleracea naturally is higher than the other species evaluated. 
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The application of vegetation spectral models was intended to summarize 

the spectral curve response to a mathematical value and become a tool for 

discriminant analysis. It is notable that vegetation indices have become effective in 

applications with hyperspectral data (Silva Junior et al. 2018) compared to notable 

research from decades past (Asner et al. 2008). The PC analysis applied to the 

vegetation spectral models brought satisfactory results, with PC1 highly related to 

the variability of the vegetation indices results (99.37%). Adopting this approach in 

hyperspectral data at the leaf level and well-defined classes results in good 

responses (Kalacska et al. 2007; Silva Junior et al. 2018). We emphasize the 

importance of using combined vegetation indices, with greater contributions by 

indices developed for quantization (NPCI) or absorption of electromagnetic 

radiation by chlorophyll (CARI2), which are based in the visible region. 

5. CONCLUSIONS 

The analysis of spectral curves of plant species allows their characterization 

based on several key reflectance points. The approaches of representative bands, 

RID and vegetation spectral models subjected to principal component analysis show 

significant contribution in the distinction, highlighting representative bands and 

RID intervals with higher reflectance variation, as well as vegetation indices related 

to the interaction of chlorophyll with radiation in the visible region. The 

methodology applied based on the spectral libraries generated for each plant was 

effective, proving to be a successful model in distinguishing plant species through 

spectroradiometry. Based on the spectral curves obtained here, future works using 

hyperspectral remote sensing in floristics and species conservation will be feasible. 
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CHAPTER II. CO2FLUX MODEL ASSESSMENT AND COMPARISON FROM 

AIRBORNE HYPERSPECTRAL SENSOR TO ORBITAL MULTISPECTRAL IMAGERY  

ABSTRACT 

In environmental research, remote sensing techniques are mostly based on orbital 

data, which is characterized by limited acquisition, besides poor spectral and spatial 

resolutions. This reflects on carbon dynamics, were orbital remote sensing bears 

devoted sensor systems for CO2 monitoring, even though carbon observations are 

performed with natural resources systems, as Landsat mission, supported by 

spectral models as CO2Flux index adapted to multispectral imagery. In this study, 

this adaptation on Landsat-8, Sentinel-2 and PlanetScope were compared to 

hyperspectral response of AisaFENIX, based on the same region of interest (ROI) on 

southern Amazon surveys. After atmospherically correction and radiometric 

calibration, the scenes were resampled to 30 meters of spatial resolution, seeking 

for a parametrized comparison of CO2Flux index, as well as NDVI and PRI given that 

are formerly indices for CO2Flux index. From it, analysis of variance was applied to 

statistically compare indices results among imagery systems and different land uses 

in the ROI. The results propose a lower reliance of PRI in CO2Flux index, and hence 

a greater correlation to NDVI. Seeing the relation among sensors, forest areas had 

statistical difference in entire comparison scenarios. Still, the anthropized land uses 

of bare soil and pasture had no statistical difference between Sentinel-2 and 

AisaFENIX suggesting this multispectral imagery as a feasible source for carbon 

dynamics assessment. A temporal dynamic assessment could improve these results, 

where both base indices for CO2Flux index are related to canopy water content.  

Keywords: carbon dynamics; hyperspectral imagery; orbital remote 

sensing; Brazilian Amazon; CO2Flux index. 

 

1.Introduction 

The global warming (Liu et al., 2020; Noon et al., 2021), human 

overpopulation (Gambo et al., 2021; Wang and Chen, 2016) and the increase in 

greenhouse gas concentrations (Ma et al., 2021) have been the subject of studies 

using remote sensing (RS) techniques. RS has always turned to environmental 

concerns, especially in land use and land change (LULC) parsing. 
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Mostly widespread on LULC research, orbital remote sensing data is 

characterized by limited acquisition, since is generated in a specific time interval 

around midday, in addition to the presence of clouds, which cover the surface, and 

involves data missing (Sims et al., 2005). Beyond, most part of sensors on orbital 

platforms are multispectral, which means poorer spectral resolution, and therefore 

data restraint (Ponzoni and Shimabukuro, 2009). 

Orbital remote sensing bears devoted sensor systems for CO2 monitoring, 

and assess different scenarios, for instance quantifying power plants emission 

(Nassar et al., 2021; Ohyama et al., 2021), urban emissions (Lei et al., 2021), wildfire 

emissions (Guo et al., 2017) and the related measure of solar-induced chlorophyll 

fluorescence (Du et al., 2018; Li et al., 2021). However, recurrent observing systems 

as Landsat (Fernandez et al., 2021), Sentinel-2 (Souza et al., 2021) and PlanetScope 

(Chen et al., 2019) affords reasonable data for modelling or assessing CO2 dynamics 

(Lees et al., 2018). 

In CO2 regard, CO2Flux uptake model (Rahman et al., 2001) aims to 

parameterizes the photosynthetic flux, originally, of boreal forest stands, taking 

base on the light use efficiency (LUE). In turn, LUE is related to the fraction of 

photosynthetically active radiation absorbed by green biomass (fAPAR), i. e. canopy 

photosynthetic capacity (Garbulsky et al., 2011; Migliavacca et al., 2011; Peñuelas 

and Inoue, 2000). 

Understanding the CO2flux uptake index depends on the associated indices 

rely on two spectral models. On one hand, the Normalized Difference Vegetation 

Index (NDVI) expresses the presence or the absence of vegetation and when it 

comes to vegetation, the type (e. g. forest, soybean, pasture) and its greenness 

(Rouse J. W. et al., 1974). On the other hand, the Photochemical Reflectance Index 

(PRI) is related to light use efficiency (LUE) of photosynthetically active vegetation 

(that is, in visible spectral range) based on hyperspectral data from AVIRIS (Gamon 

et al., 1997, 1992). Assuming multispectral imagery, PRI and its scaled version 

(sPRI) data has higher correlation to LUE using MODIS band 13 (662 – 672 nm), 

using backscattered images (Drolet et al., 2005). 

The applicability of CO2Flux uptake model (Rahman et al., 2001) by 

foundation is based on hyperspectral data of AVIRIS (Airborne Visible/Infrared 

Imaging Spectrometer), which qualify airborne sensor Specim® AisaFENIX 
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(SPECIM, 2020). Although, this airborne dataset (in forestry research) sticks to low 

temporal resolution and availability, hampering the CO2 emission and absorption 

assessment with this dataset. Even, CO2 surveys are characterized by requiring 

tuned models to the type of environment (Barnes et al., 2021). 

Albeit CO2Flux index (Rahman et al., 2001) formerly based on hyperspectral 

data, in several studies CO2Flux uptake was assessed by adapting PRI to 

multispectral imagery, by carrying out this index with blue and green bands, in place 

of 531 nm and 570 nm, respectively (Cerqueira and Washington Franca-Rocha, 

2007; Correia Filho et al., 2021; do Nascimento Lopes et al., 2019; Fernandez et al., 

2020; Polonio, 2015; Santos, 2017; Silva Junior et al., 2019; Souza et al., 2021). Even, 

drought condition affects PRI results in CO2Flux estimation (Inoue et al., 2008).  

Towards assert this adapted version, a valuation of CO2Flux index with 

hyperspectral dataset could reach orbital multispectral imagery systems. Turning to 

Amazon and using OLI / Landsat-8 multispectral data, CO2Flux values in this LULC 

patterns varies from 0.48 to -0.09 μmol m-2 s-1 (Silva Junior et al., 2019). 

In this paper, were compared CO2Flux index applied on four imagery 

systems, in which its scenes in the same ROI (region of interest). This study site 

affords three different land uses, which are native forest, bare soil and pasture. The 

contentious applicability of Rahman’s model based on multispectral imagery will be 

discussed with the observation of an imaged Amazon Forest area in northern Mato 

Grosso state, in Brazil. 

2.Materials and methods 

2.1 Study site 

This research was based on a Specim® AisaFENIX image captured on Alta 

Floresta city (Latitude 09º52'32"S and Longitude 56º05'10"W, altitude of 283 

meters), on northern Mato Grosso state and southern Amazon biome. With an 

average annual daily temperature of 26,4°C, is characterized by two well-defined 

climate seasons with high temperatures, the rainy and the dry season, classified as 

Aw according to Köppen-Geiger Climate Classification, and an average annual 

rainfall of 2281 milimeters. 
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Fig. 1. Imaged area in Alta Floresta, southern Brazilian Amazon and forest areas in the city, 

Northern Mato Grosso state. 

 

The imaged area was taken in Alta Floresta urban zone purlieu. It is worth 

pointing out this area features native forest area, pasture area and bare soil, which 

have different CO2 emission patterns, within distinct land uses means different 

carbon gains or losses (Ostle et al., 2009). 

 

Fig. 2. Regions of interest, classified as forest (green), bare soi (red) and pasture (yellow) 

areas in the study site. 
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2.2.   Data procurement and image pre-processing 

2.2.1.   Hyperspectral image 

As abovementioned, the hyperspectral image (HSI) is based on Specim® 

AisaFENIX (SPECIM, 2020), a push broom imaging hyperspectral spectrometer, 

which covers a spectral range from 380 nm to 2500 nm, i. e., comprise visible, near 

infrared and short wave infrared. Data collection was conducted on 9th October 

2017, on board of an aircraft. Thereafter, the radiometric correction of image was 

carried out using CaliGeo Pro software, designed by Specim. 

Table 1 

Detail of AisaFENIX system and data acquisition traits. 

 VNIR¹ SWIR² 

Spectral range 380 ~ 970 nm 970 ~ 2500 nm 

Spectral bands 344 275 

Detector 
Complementary metal-oxide-

semiconductor (CMOS) 

Mercury Cadmium Telluride 

(MCT) cooled detector 

Spectral resolution 3.5 nm 12 nm 

Field of View 32.3° 

Focal aperture F/2.4 

Radiometric resolution 16 bits 

Imaging speed 130 frames per second 

Spatial resolution 0.65 m (at 600 m of altitude) 

¹VNIR: Visible and Near-Infrared; ²SWIR: Short-Wave infrared. 

2.2.2.   Orbital data 

High temporal resolution from orbital datasets improves data acquisition, 

making remote sensing approaches eligible in environmental assessments. Working 

on open access imagery, were chosen OLI/Landsat-8, MSI/Sentinel-2 and 

PlanetScope data. Orbital data chosen were based on the nearest day of acquisition 

related to HSI data collection. 

Data from Landsat-8 has medium spatial resolution varying from 15 to 100 

meters, and as a free-access data has a plenty use in remote sensing. OLI 

(Operational Land Imager) sensor have nine spectral (Table 2) bands ranging from 

visible electromagnetic spectrum to short-wave infrared (“Landsat 8 | U.S. 

Geological Survey,” n.d.). In this study, were applied the required bands for NDVI 
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(band 4 for red and band 5 for near infrared) and the adapted PRI (band 2 for blue 

and band 3 for green), which has 30 meters of spatial resolution. 

 

Table 2 

OLI/Landsat-8 bands characterization 

Band name Description Spectral range (nm) 

B1 Coastal/Aerosol 433 ~ 453 

B2 Blue 450 ~ 515 

B3 Green 525 ~ 600 

B4 Red 630 ~ 680 

B5 Near Infrared 845 ~ 885 

B6 SWIR 1 1560 ~ 1660 

B7 SWIR 2 2100 ~ 2300 

B8 Panchromatic 500 ~ 680 

B9 Cirrus 1360 ~ 1390 

 

In order to assess free-access orbital data, MSI sensor on board both Sentinel-

2 mission satellites fits in this criterion. This imagery has medium spatial resolution 

ranging from 10 to 60 meters, over 13 spectral bands (Table 3) from visible to short-

wave infrared, as seen on OLI/Landsat-8 system (“MSI Instrument – Sentinel-2 MSI 

Technical Guide – Sentinel Online - Sentinel Online,” n.d.). Here, the NDVI is based 

on bands 8 (Near infrared) and 4 (Red), while adapted PRI is calculated using bands 

2 (Blue) and 3 (Green), where these bands have spatial resolution of 10 meters. 

 

Table 3 

MSI/Sentinel-2 bands characterization 

Band name Description Spectral range (nm) 

B01 Aerosols 421.7 ~ 463.7 

B02 Blue 426.4 ~ 558.4 

B03 Green 523.8 ~ 595.8 

B04 Red 633.6 ~ 695.6 

B05 Red edge 1 689.1 ~ 719.1 

B06 Red edge 2 725.5 ~ 755.5 

B07 Red edge 3 762.8 ~ 802.8 
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B08 Near infrared 726.8 ~ 938.8 

B08a Red edge 4 843.7 ~ 885.7 

B09 Water vapor 925.1 ~ 965.1 

B10 Cirrus 1342.5 ~1404.5 

B11 SWIR 1 1522.7 ~ 1704.7 

B12 SWIR 2 2027.4 ~ 2377.4 

 

In detail, the orbital data from Landsat-8 system were obtained on October 6th 

2017. The study site was completely covered by one scene from this imagery. 

Regarding to Sentinel-2, it took two scenes to cover the entire study site, based on 

October 14th 2017. Last, PlanetScope image was acquired through Google Earth 

Engine, based on October 7th 2017 survey. The orbital data was corrected, that is 

scattering effect minimizing and radiometric calibration was carried out to correct 

the images. 

 

Table 4 

Detail of scenes from orbital platforms. 

Imagery Scene 

OLI/Landsat-8 LANDSAT/LC08/C01/T1_RT_TOA/LC08_227067_20171006 

MSI/Sentinel-2 
20171014T140051_20171014T140051_T21LWK 

20171014T140051_20171014T140051_T21LXK 

PlanetScope Acquisition through Google Earth Engine 

 

2.3.   Data processing 

After acquisition (with atmospheric and shape correction), the AisaFENIX 

scene and the orbital data were handled on ArcMap 10.8 software. The tool 

“Resample” (Fig. 3) was applied on data tuned to nearest resampling, in order to 

equalize spatial resolution among the different databases. Thus, AisaFENIX, 

PlanetScope and MSI/Sentinel-2 data were lowered to 30 meters of spatial 

resolution. 
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Fig. 3. Resample tool (ArcMap 10.8) processing on original (a) AisaFENIX scene to 

resampled (b) scene, with RGB composition on bands 42, 26 and 12. Scene detail from 

original (c) and resampled (d) image. 

In order to take only the ROI (Region of interest), “Extract by mask” tool on 

ArcMap 10.8 was used. After that, were calculated the indices on which CO2Flux 

uptake model is based, namely NDVI, PRI (and its scaled version) and CO2Flux index 

itself through QGIS3 software, using the tool “Band Math”. 

 𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷
   (1) 

 𝑃𝑅𝐼 =
𝜌531𝑛𝑚 − 𝜌570𝑛𝑚

𝜌531𝑛𝑚 + 𝜌570𝑛𝑚
   (2) 

𝑠𝑃𝑅𝐼 =
𝑃𝑅𝐼 + 1

2
             (3) 

 𝐶𝑂2𝐹𝑙𝑢𝑥 = 𝑠𝑃𝑅𝐼 × 𝑁𝐷𝑉𝐼    (4) 
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The selected bands to replace ρ531nm and ρ570 nm on orbital datasets were 

blue and green bands respectively, as aforementioned in referenced research. In 

turn, the AisaFENIX bands used in the VI’s calculation were the closer to the 

reference on models, 62 for 𝜌𝑁𝐼𝑅 and 42 for 𝜌𝑅𝐸𝐷 in NDVI equation, and bands 23 

and 29 for ρ531nm and ρ570 nm in PRI equation.  

 

2.4.   Statistical approach 

For each variable evaluated, analysis of variance was performed 

considering an entirely randomized design with 10 repetitions in a 4x3 factorial 

scheme (four sensors vs three land use and land cover). Subsequently, Tukey's test 

was applied for multiple comparisons of means. In all cases, a 5% significance level 

was adopted. 

3. Results 

3.1.   CO2Flux index 

Initially, the spectral data from airborne and orbital systems were processed 

and undergone on index calculation. From this approach, the band math was carried 

out with NDVI (Fig. 4), PRI (Fig. 5) and mainly with CO2Flux (Fig. 6) in the ROI. The 

spectral profile along the scene from this calculation is presented on Supplementary 

Material. 

  

Fig. 4. Normalized Difference Vegetation Index (NDVI) results for OLI/Landsat-8 (a), 

MSI/Sentinel-2 (b), PlanetScope (c) and AisaFENIX data.  
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Fig. 5. Photochemical Reflectance Index (PRI) results for OLI/Landsat-8 (a), MSI/Sentinel-

2 (b), PlanetScope (c) and AisaFENIX data. 

  

Fig. 6. CO2Flux uptake index results for OLI/Landsat-8 (a), MSI/Sentinel-2 (b), PlanetScope 

(c) and AisaFENIX data. 

By using 3D analyst on ArcMap 10.8, were generated the profile graphs based 

on a north-south transect aligned to the scene, described in the OLI/Landsat-8 scene 

with RGB true color composition on Fig. 7. It’s worth pointing those lower values on 

horizontal axis concern forest land use, while higher values are about bare soil, and 

beyond for pasture. 
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Fig. 7. Transect on the OLI/Landsat-8 scene (left) and NDVI, PRI and CO2Flux spectral 

profiles (right) based on the transect. Horizontal axis refers to the spatial variation over the 

transect line (Kilometers), while vertical axis represents the index value. 

3.2.   Statistical approach 

There was significant interaction on sensors and Land Uses and Land Cover 

(LULC) comparisons for all evaluated variables (Figure 8). This indicates that there 

is differential behavior of the sensors along each LULC and back again. In order to 

appreciate Fig. 8 results, there is no statistical difference when comparing sensors 

(lowercase) or LULC (uppercase) with same letter. 



75 

 

 

Fig. 8. Significant interaction among sensors versus LULC for the vegetation indices NDVI, 

PRI, sPRI and CO2Flux. Uppercase letters express statistical similarity or difference on by 

comparing LULC for the same sensor, and lowercase letters express statistical similarity or 

difference on the same LULC for different sensors. 

For NDVI (Fig. 9) and CO2Flux (Fig. 10), bare soil had no statistical difference 

among sensors. However, the AisaFENIX sensor had the highest NDVI averages in 

comparison to multispectral sensors turning to forest and pasture. Also, it is 

observed that the forest presented the highest NDVI averages in relation to other 

LULC, regardless of the sensor as expected. 

 

Fig. 9. NDVI on bare soil area (blue polygon) based on Landsat-8 (a), Sentinel-2 (b), PLANET 

(c) and AisaFENIX (d) scenes. 
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Fig. 10. CO2Flux index on bare soil area (blue polygon) based on Landsat-8 (a), Sentinel-2 

(b), PLANET (c) and AisaFENIX (d) scenes. 

Regarding to PRI or sPRI, were spotted higher mean values on Landsat-8 

dataset compared to other sensors. Furthermore, among LULC types, forest 

presented the highest mean values of PRI and sPRI. Despite this, sPRI values across 

the entire dataset were close to zero, irrespective of LULC and sensor. 

Concerning CO2Flux, the AisaFENIX sensor reached the highest averages in 

relation to the others for forest and pasture, despite pasture did not differ 

statistically by comparing AisaFENIX to Sentinel-2 (Fig. 11). As with the other 

vegetation indices, forest presented the highest averages by comparing to other 

LULC, regardless of the sensor. 

 

Fig. 11. CO2Flux index on pasture area (blue polygon) based on Landsat-8 (a), Sentinel-2 

(b), PLANET (c) and AisaFENIX (d) scenes. 

4. Discussion 

The atmospheric carbon and related uptake and emission phenomena 

assessment through remote sensing techniques can be grounded on net ecosystem 

exchange (NEE) or more seldom on CO2Flux uptake (Rahman et al., 2001) 
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estimations, for instance this paper. In the first case, collateral information and 

rugged computational tools and techniques are required (Zhang et al., 2021). On the 

other hand, CO2Flux uptake take merely remote sensing data, what prompted this 

and the abovementioned research. 

Regarding to PRI, the substantial difference in this VI (and on it scaled 

version sPRI) among sensors was evident, owing to different blue and green bands 

in multispectral and hyperspectral bands. This difference is greater on hyper versus 

multispectral comparison, where both narrow PRI reference bands are in the blue 

range in the three orbital sensors considered in this study. 

The comparison between OLI and MSI on savanna areas and using the 

aforementioned resampling reached root mean square difference of 0.0314 (Zhang 

et al., 2018), what could be similarly seen on this work, despite being an evergreen 

forest area. Herein, NDVI values were statistically distinct between OLI to MSI 

comparison, both in forest and pasture LULC, which most resemble the savanna. 

From the analysis of variance illustrated on Fig. 8, we observed that 

comparison among sensors and LULC were similar between NDVI and CO2Flux, 

suggesting that PRI does not contribute significantly to CO2Flux in these conditions. 

Nevertheless, it was also thought that environmental conditions related to drought 

would affect PRI performance (Hwang et al., 2017), as in this estimation model 

(Inoue et al., 2008), suggesting further assessment on CO2Flux uptake model 

considering temporal variations related to drought and rainfall seasonality, since 

the performance of carbon sinks is related to canopy water content (Asner et al., 

2016). 

The presence of NDVI on CO2Flux index rely on biomass measurement and 

its greenness (Rahman et al., 2001), as NDVI performs best in leaf biomass 

estimation, where PlanetScope and Sentinel-2 data has been assessed as good 

predictors of aboveground biomass, which in turn is the greatest carbon pool in 

trees (Baloloy et al., 2018). In remote sensing, the Gross Primary Production (GPP) 

is another metric for CO2 balance, which expresses the uptake via photosynthesis, 

and is weaklier related to NDVI on LULC with higher NDVI values (Menefee et al., 

2020). Herein, higher values of NDVI had lower correlation among datasets specially 

on forest areas, and except on PlanetScope versus Sentinel-2 comparison, which in 
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spatial assessment similar results were expected from phenological research work 

(Cheng et al., 2020). 

Atmospheric carbon dioxide uptake assessed through CO2Flux index 

provides a metric related to land cover, limited on temporal variability. However, 

considering land use change is more appropriate in the current scenario for the 

Amazonian rainforest, taking into account the rainfall seasonality and the climate 

variations that so greatly affect the carbon uptake capacity of carbon sinks (Asner et 

al., 2004). This suggests to us that the model is potentially functional when studying 

spatial-temporal dynamics of this biome. 

In a broad observation of multispectral sensors results, MSI/Sentinel-2 has 

the closer results to AisaFENIX, noting that there is no statistical difference in bare 

soil and pasture among datasets, by analysis of variance. Despite CO2Flux with 

difference among sensors, NDVI had similar difference, what justifies further hyper-

multispectral comparison studies, especially in the Amazon biome. 

 

5. Conclusions 

We compared the CO2Flux uptake index among four imagery datasets, 

demonstrating that this index can be based on open-access orbital multispectral 

imagery, bearing sufficient data for carbon uptake modelling. The results shown in 

this paper suggests MSI/Sentinel-2 closer results related to hyperspectral data from 

AisaFENIX sensor on anthropized areas of bare soil and pasture, with no statistical 

difference between these sensors. Mainly, the CO2Flux uptake index on 

multispectral data and in AisaFENIX with results closer to NDVI expresses easily 

dependent on PRI. Even, the spatial-temporal dynamics of rainfall seasonality 

relation to CO2 uptake should be assessed in future research. Furthermore, research 

applications using CO2Flux uptake index directly using Sentinel-2 data will be 

enforceable, especially on LULC similar to pasture and bare soil, as seen in livestock 

lands. 
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